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The generalized definition equation of a G-weighted metric ds® from the datum of any group
G acting onto a vector space mapped by a continuous numerical function y is applied when
E = R" and G = the group of translations in R". Here, G does not act linearly in R” and R" is
considered as an affine space. The solution reads ds* = —d?(InI)/(Bp), I = (4imx0)? . w,
where x° = —i/(2p), ¥ is a solution of the Schrdinger-type equation A¥ + i 8¥/8x® = 0, and
B is 2 uniform term depending on x°. When n = 3, p is interpreted as the reciprocal of a time
variable. Attempts to identify ds® with the spatial part of a space-time metric of general relativ-
ity failed except for the flat Robertson and Walker spaces. In the simplest case, B = 1/R%(t)
and ¥(p,r) = e P"/2 A uniform but non-constant “imaginary potential energy” of the space
can be formally derived: V{x°) = 3i/(2x?). Despite a striking formal link with tools of physical
mathematics, no physical validation of the propositions of chemical algebra is claimed.

1. Introduction

Vector translations in R" are not linear. Although the theory set out hitherto
refers to linear representations [1-4], the definitions of K, (u, v) and &, y(x) can also
be formally applied to any non-linear operation of a group G onto an Euclidean
vector space. However, attention has to be paid not to use formula such as

g(u+v) =gu+gvoras |gu|| = ||ul|. R"is also considered as an affine Euclidean
space, and the contravariant notation for the components x!, ..., x"ofavectoruin
R"is adopted.

2. Insights into a generalized equation () for a non-compact group G
2.1. FORMAL DERIVATION OF &, ;14 FOR THE GROUP OF TRANSLATIONS IN R"

The group G of the translations in R”" is not compact and not finite Haar measure
is available for G [5]. G is topologically equivalent to R”" itself, and the vector of a
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translation g in G is denoted by t in R". In the case of linear representations, an
operation g acts as a linear application whose components in the canonical basis set
are linear forms belonging to the dual space of R": by extension to affine applica-
tions, it is therefore relevant to adopt a covariant notation for the components
1, - .,y of the vector t defining the translation g. The notation [ . ..dg is used for
the current notation of convergent integrals over R" multiplied by an arbitrary fac-
tor ¢*/? whose dimension is the reciprocal of a volume: if F is an integrable map of
G =~ R"and if dr denotes the volume element in R™:

+00 ~+00
/F(g) dg q"/Z/R F(t) drz/ / Ftr, . t) g dtr ..dty.
G n —00 —00

The occurrence of the symbol ¢*/? is dictated by the non-availability of a well-
defined Haar measure on a non-compact group: g serves the requirement that
dg = ¢"/*dt, . . . dt, must be adimensional. One has to keep in mind that ¢"/2 tends to
some infinite quantity when the limits of the experienced space draw nearer to infi-
nity (the condition [, dg = 1 might still be then formally satisfied). The notation
is formally used to justify the final formulation of the equation (E) in the case of a
non-compact group. The group of translations in R” is non-compact, and the local
definition of @y for v = u + dureads[6]

By urdu(7ds) = 1 + pB(u, du)ds’
with
o ds’ = (do/ ~)? (if v is formally adimensional, both ds and do have the dimension

of alength) ) (

(gu — g(u + du)lku — k(u + du))

e B(u,du) = / / wa (@)1 o (K) llgu — g(u + du)]| - [[ku — k(u + du)]| % dk/
G2

4
( / Fuu(g) dg) (this expression was denoted as B2(u, du) in ref.[6].)
G

Since the equality g(u + du) = gu + gdu is no longer valid for a non-linear repre-
sentation, the calculation of B(u, du% proceeds differently. The integral over G? is
identified with an integral over (R")": let g denote the vector of the translation g,
and k the vector of the translation k. Then,
(gu — g(u + du)|ku — k(u + du))
C u,u+du) = .
ks 8 ) = o ela + dw)] - [lea — k(u + du)]
_ (g+u—-g-u-—duk+u—k-u—du)
" llg+u-g—u—du| |k+u—-k—u—du
lu]* _

* [ldulf*

Thus,
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B(u,du) = /@ [ et 1 dg e / [ pante) dg)4,
B(u,du) = ( /G Hau(8) dg)2 / ( /G fuu(8) dg>4-

Using the definition of the symbol dg = ¢"/?dt, . . . dt, we get

B(u, du) = ( [ e dn.. dt,,)z / ( | pnle)e dn.. .dr,,)4,

B(u, du) = g~ (/R W2.0(g) dn . .dt,,)z/ (/R pau(g) i ..dz,,)4.

Since g =~ oo, B can remain finite if

b(u, du) = ( | i dn. ..dt,,)z / ( | ase) . ..dz,,)

is infinite too.
The equation is written as

By urau(do) = 1 + pB(u,du)ds® .

B(u,du) does not depend on du, and it will be seen that the standard hypothesis
on yy u entails that B(u, du) does not depend on u either. The left-hand side of eq.
(E) reduces to

dju,u—%du(’yds) =1 +pB(u)ds2 .

4

In conclusion, after calculation of the local pairing product K,(u,u+ du), the
equation “®yyiau(do) = K,(u,u+du)” is expected to define a classical
Riemannian metric in the selected coordinate system.

2.2. FORMULATION OF PAIRING PRODUCTS FOR THE GROUP OF TRANSLATIONS
IN R*

Although no conditions are precised, the definition of K, and eq. (E) are formally
applied to the non-compact group of translations in £ = R". For the sake of brev-
ity, let us define the two-variable map p on (R”)Z: p(u,t) = pau(g), where t denotes
the vector of a translation g.

K (u,u + du)
/,u(u, t) exp{—‘g lt+u— uliz] dr- //,L(u, t) exp [—% lt+u+da—u-— du[iz] dr

/u(u, t) exp [—g flt+u+du-— uﬂz} dr - /u(u, t) exp[—gllt +u—u- du”z] dr
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where t = (¢y,...,1,) (covariant vector), dr = dt; ...dt,, and where the integral
symbol [ stretches from —oo to +oo for all the arguments 11, .. . , 2,..

K?(u,u +du)
{ [ wtuseerp[ 2ol dr}2

- / p(u, t) exp[_guuduuz} dr - / u(u, €) exp[—% uc-dunz] dr

A second-order Taylor expansion in du yields

2
K (u,u+du) ~ { / p(u, t)e I’/ d,,} /

( / u(u, t)ePlr/2 [1 —g ldul|* - p(t|du) +p;(t|du)2} dr

2 2
X / p(u, t)e P72 [1 —gl{du]|2+ p(t]du)+%(t|du)2} dT).

Let us define the integrals:

= / p(a, ) M2 gr; g = / p(u,t) (tlllj_zll) A dr

K= / p(ua,t) (tlni‘;_“i”)ze—pntuz/z dr.

Then,
K7 (u,u +du)
12

{11 ~iaal?] - psidu) + 2 Kiaal® 11 ~Z1aal?] + pslaul + & Kl

o~
~

i

K?(u,u + du)
1

p ,  J PP K > P ,  J K )
_z —p . 1 =214 i P
{1 2I}a’u][ p1||du|! -+ > 7 [|dul| }{ 2][ ul| +pI|]du|i + 7T [|dul]

~
~

H

K} (u,u+ du)
1

~
~

p 2 J P’ K s P s P K o fJ 2 -
— —_—— LS < ~|ld . —ld — —
1 2][du]l pll]du[] + 77 [|dul| 2|[du}| +pI][ u)| + 7T |[du]|® —p 7 [|dul|
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KP(u,u+du) = = ! .

y4 2 :
K J )
1 — —p— el
p\l-p7 ‘“’(1) l|dul|

And finally,

Y 2
KE(w,u+du) = 1+4p|1-p7+p(7) | ldul?.

2.3. G-WEIGHTED METRICS OF THE GROUP OF TRANSLATIONS IN R"

From the preceding sections, the definition equation (E) of do? = (vds)* is writ-
ten down by equating K (u, u + du) with @y 4 4u(vds) = 1 + pg~"b(u)ds*:

1 K (\* )
ds* 0] [1 —p7+p<7> }Hdu” .
Sinceu = (x!,...,x"), (t|du) = Y tidx!, dr = dt; ... dt,, |du|* = 3 (dx)?, let

Ji = //J,(ll, t)tie-p”tnz/z d’T,
K = / u(u, O)2e P12 g

Lij = /[,L(u, t)t,’tje-p“t”z/z dr (Wlth L= K,) .
Then,

Ul = (L aad)'= Y Y Jdddd

1<ig<n 1gj<n

= > JHaxY+2 > JiJdxdx .

1<i<gn Igi<j<n
Likewise,
Kldul’ = )" Ki(dx)*+2 > Lydddx’.
1<ign I<i<j<n
Thus,

B(u)ds* =) {1 —p% +p (?) } (dx'): +2p Z (—J% - %) dx'dx’ .
i=1

I<i<jgn
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This expression is now simplified by using an integration by part in J;:

‘Ii = //‘l’(u7 tls ey tn)tie_p(t%+"'+t§)/2 dT = ——1-/ e"!’(”t||2—t;2)/2
p

+oo dr
[ ot -prei an {51

o0

-1 -
Jim = [ MDA, e

1y==400 d
—/ %(u,tl,...,t,,)e‘P‘?/zdti}——T.

l=—00 atl dtl
If we assume p(u, 1y, . . ., t,)ePi/2 — 0, then,
ti—00
1
5=1 a“(u b t)e P2 g
p

Likewise, it is easily shown that under the same condition, if i # j,

1 Pu 2
1 n L p\ePItP2 g
Ly P2 / 8t,~8tj (ll, 1 s n)e T,

andifi =,

1 1 Pu 2
= L= [ (a4 8 . e
Ki=L p/(u—}— 6t2)(u ly---yln)€ T

Therefore, the expression of ds? becomes homogeneous:

B(u)ds®
1A & ./ —mmﬂdf/ﬂ_éwwuzd ‘/:fﬁfwmwzw.
=->_> 913 "
p i=1 j=1 - dx‘dxf .

r? I

Generally speaking, a relevant form of y, v(g) has been propounded, namely [7]:
pay(g) = m(g)m(gu)m(gv). Thus, uyu(g) = m(g)n*(gu), where m and « are one-
variable maps of G and R", respectively. Assuming m(g) = 1 (all translations are
““equally possible’), the function u(u, t) defined on E? = R*isto have the form

u(u, t) =p.(x1,...,x",t1,...,t,,)=Tr2(u+t)=,u(x1+t1,...,x"+t,,),

where 7(y) = p(y) isanow a function of the argumenty = (y',...,y") e E = R".
This assumption entails two consequences:
a) B(u)isaconstant:
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)/

B=q‘"(/R PO+, X ) dty L d,

4
(/ u(xl+t1,...,x"+t,,)dz1...dz,,) (for u = (x!,...

2
=q—n(/ p2(t1,...,tn)dt1...dt,,) /(/ wlty, ... ty) dty ... dt,

which is independent of u.

b) It renders the integrals I, J;, L;j convolution products. Then,

O op o
Bt,( XN, ) = By (u+) Bx‘( R 4 ST
and subsequently
goor. o
T oxi’ TV gxioxd
Thus,
I ;) ) I oy
Bdsz—pzz Ox'8x) _ Hxidx! dx'dx’
i=1 j=1 Iz - T
1 GG (Ind)
= _- dx'dx’ |
p;; OxiOx/
where

1= [+ 0e?W 2 dr = [ ua— e ar.

In conclusion, ds? is an “‘exact second differential”’ defined by

d*(Inl)

—Bp= ds?

253

)xn))

),

 tn)

It must be stressed that this definition refers to the given “rectangular’ coordinate
system initially selected to formulate eq. (E). Although In[ is supposed to be a sca-
lar tensor, it is known that 8*(In I)/8x'0x/ is neither a (0, 2), a (2, 0) nor a (1, 1) ten-
sor (in contrast, the gradient 8(In I)/0x' is a covariant (0, 1) tensor). The bordered
definition has no tensorial character, that is, in another coordinate system {x"},

the linear element

oxk axt 8*(Inl)

do* # Ox'i Bxi Oxhdxk

dx''dx! .
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Remark

This point and the differential formulation of ds? naturally prompt us to attempt
to replace the ordinary differential of the equation by a covariant derivative in
order to formulate an analogous tensorial definition of ds” [8]. Indeed, the preced-
ing equation can be written as: —Bpds* = d(Vj(InI)dx"), where V,(InI)
= 9(InI)/8x" is the gradient of In I. Since V,(In I) is a covariant tensor, a tensorial
differential equivalent is defined through the covariant derivatives of the compo-
nents Vj(InI), 1<h<n. Thus, a tensorial definition of ds* might be given by:
—Bpds* = D(V(InI)dx"), where D denotes the absolute differential of a tensor.
However, this attempt is fruitless. Indeed,

_ &(Inl) L d(InI)
T oxhgxk M KT gxm
where I, denote the Christoffel symbols of the second kind with respect to the
symmetric covariant tensor field gu to be determined:

Ly = g™ Thie

(where g™ is the contravariant reciprocal of gy, : gug™ = &),

D(Vi(InI)dx*) = (Vi(In1))dx*dx*,  Vy(InI),

1[0gn , Ogm  Ogn
2|0xh " Oxk ox

Thus, the equationreads —Bpgue = (Vi(In 7)), i.e.
*(In1) o(In1)
~BPgH = 5 ok oxm

where the g;;’s are unknown for a given functionln 7.

Since the affine connection corresponding to g;; 1s symmetric, the covariant deri-
vative of g;; expressed in terms of this particular connection vanishes identically,
i.e.: gnk = 0 (Ricci’s lemma). Thus, if Bp # 0, (V;,(ln[))!k]‘. = 0.

On the other hand, the Ricci’s identity for a covariant vector field Y}, is written

Dy = (Christoffel symbols of the first kind).

+ Iy

as

K Y1 — SE' i Y = Yo — Yogie »

where Kj/;; denotes the curvature tensor and Si/; denotes the torsion tensor. Since
the Christoffel symbols are symmetric, Si/; = 0, and the Ricci’s identity boils down
to: —Kp'ii ¥ = Yii — Y- Let us apply this identity for ¥; = V,(InJ):

-Kh’kivl(lnl) = Vh(lnl)]k]i - V;,(InI)Mk =0-0=0.

The equality K/s; Y, = 0 is a necessary and sufficient condition to be satisfied by a
parallel covariant vector field Y}, on a curved space such that Kj'y; ¥; # 0. There-
fore, Vi(InI)is a parallel gradient, i.e.: V;(In7 )i = 0. Consequently, if we suppose

Bp # 0,
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1
g = =5~ (V(In1)) =0 and ds* =0.

/4
In conclusion, the sole (non-zero!) metric that might be tensorially represented as
an absolute second differential corresponds to a flat space (where Kj/; ¥; = 0)!

3. Speculations for an interpretation of I and ds?
3.1. ON THE EXTENSION OF THE EQUATION (E) FOR COMPLEX VALUES OF p AND

It appears not straightforward to formulate a natural extension of eq. (E) entail-
ing a (positive or negative) real solution ds® for complex-valued functions y and/
or for imaginary parameters p’ = ip, pe R[9]. Therefore, the simplest formal exten-
sion of (E) is considered for complex values of p and p’ = ip, even though the solu-
tion ds® isno longer real.

Replacing p by p’ = ip and the real function u(u — t) by a complex counterpart
in (E), the same derivation leads to

d*(In1
gy 0D
ds
where the condition p(u, 11,. .., t,)e"?4/2 — |, —oo 0 18 satisfied by requiring that y
isregular enough and vanishes at infinity, i.e.: p(u, t1,. .., ) =, , 0.

3.2. CONNECTION WITH THE FORMALISM OF QUANTUM MECHANICS

Setting p’ = 1/2x°, we recognize that if  does not depend on p, the product
U= (2vVmx0)"-I

is a generic solution of the equation of the heat (x’° varies as the time variable ¢,
and ¥ represents the temperature) [10]:
ov
Ox’0
where A is the Laplace operator: A = V2 = /(8x')* + ... + 8*/(8x")*. For-
mally, if x° is no longer a real number but a pure imaginary number (x® = ix?, x°
real), then, this equationis a Schrodinger-type equation:

OV

z e

9x0
where the Hamiltonian reduces to the Laplacian kinetic term: no potential term

takes place. However, in the preceding treatment, p and B are considered as con-
stant parameters. The function p is therefore allowed to depend on p. Suppose that

— AT =0,

= AV,
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w has the form: u(y) = a(p)B(y) where a(p) does not depend on y and where ((y)
does not depend on p. Then, ¥/« is still a generic solution of the above Schrodinger-
type equation for p = —i/2x%, and therefore ¥ is a generic solution of a Schrodinger-
type equation with a uniform term:

ii y =-A y . P(x*=0,x,y,2) = alp = ico)u(x,y, 2),
X% \ o

ov g . oy .4(lna)
—a—xa_—ALP—{—V(x)W_HEP, with V(x") =1 I

In quantum mechanics, a wave function accross the whole space is associated with
a particle (or a system of particles) which is endowed with a fixed set S of extensive
parameters (mass, charge, spin, etc.) and which is subjected to an external intensive
potential P. S and P give rise to a potential energy V of the particle. Since the space
is defined by its filling (e.g. the vacuum as a borderline case), a wave function might,
in turn, be associated with the space itself. Such a wave function would be defined
by a Schrédinger-type equation.
In order to interpret the two previous examples as borderline cases of a more gen-
eral interpretation, it can be naturally suggested that the quantity
I 5_!P + AP
VO, u) = o0
1

x,u
represents some kind of complex “potential energy of the space”. In other words,
¥ is a solution of the Schrodinger-type equation HW + i6¥/0x® = 0, where
H =T+ V is a Hamiltonian operator with a complex ‘“potential energy’’ term
(which now depends on both time- and space-coordinates). The function u essen-
tially determines this potential energy in that sense that V(p,u) = 0 if u does not
depend on p and that V(p, u) is uniform (i.e. only “time-dependent”) if u has the

form pu(y) = a(p)B(y).

3.3. CONNECTION WITH THE FORMALISM OF GENERAL RELATIVITY

i

General relativity states that the space-time is a Riemannian manifold endowed
with metric g;;dx'dx/ (i = 0, 1, 2, 3) which is determined by the mass-energy flow
entering the Einstein equations. The datum of a ‘“‘spatial wave function” in the
(non-physical) equation —Bpds®> = d* In¥ defines a “‘complex metric” ds?, the real
part of which might be identified with the spatial part of a space-time metric at
each time-like parameter p = —i/2x". However, this speculative analysis does not
give a complete space-time-like metric, for the variable “‘time” is not represented in
the vector u (u is not a 4-vector).

Direct problem. We are given some affine scalar of a real Euclidean space T,,, which
is to be expressed in some rectangular coordinate system {x!,...,x"} by: u:
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R"—R (or C). The expressions Py yrau(x) and K,(u,u + du) are then written
down for the group of translation of T, at each point u marked by (x!,...,x") in
R":eq. (E) is then solved, and a linear element ds? is brought up. The pair (R", ds?) is
interpreted as one description of a Riemannian manifold X, in the same way as
(R",ds?) is a description of the affine Euclidean space T, (where ds? = (dx')?
o (A,

Equation (E) would play two roles:

(a) itintroduces a supplementary ‘‘time coordinate”, p;
(b) it transforms the flat space 7, into a distorted (curved) space X,.

Equation (E) can be regarded as an application of a ““time” variable onto an affine
space, where p plays the role of an “initial datum™. A translation t makes a connec-
tion between two points of 7,. A component ¢; operates independently on each
direction ‘7, like a “‘time potential” which generates the possible motion
x' = x' + t;in T, along the direction ““i”’. The “‘time coordinate” x° = 1/(2p) would
then be defined from the action of the group of translations in R? and the corre-
sponding equation (E).

Converse problem. We are now given a space-time metric gydx'dx/ (i =0, 1, 2, 3)
issued from the Einstein equations, the pure spatial part being denoted
dl? = yapdx®dx® (0 # a, =1, 2 0r 3: Yag = —gap + L0o&0s/&o0) [11]. We search
for a corresponding wave function ¥ (or its “initial datum” p), and more precisely,
for one coordinate system {x'} of X,, satisfying:

(a) the open set of R* covered by the x’sis R* in its entirety;

(b) the expression of d/? in this coordinate system is a solution of some equation
(E) written down for the group of translations in R? and for a function y of the
x*’s. From the preceding section, it follows that this condition is equivalent to
the existence of a function A(x, x!, x2, x*) such that: dI* = d?>4, where d? refers
to the three space coordinates only, i.e.

Yap = 5% a,B8=1,2,3 (six terms) .
Example.: search for space wave functions of Robertson and Walker spaces

It must be henceforth stressed that the convolution form for ¥ does not allow
for describing the simplest non-flat space in rectangular coordinates. Robertson
and Walker space-times are compared with a completely isotropic perfect fluid.
Indeed, the metric of such spaces is given in spherical coordinate, by
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ds?, = c*dt* — R*(t) { : d'i >+ r*(d6* + sin d¢*)
(here: x* =ct or ict, k=0, 1 or —1, and the Riemannian curvature equals

k/R2(1)).
Since dx? + dy? + dz* = dr* + r*d6* + r*sin § d¢4?, it can be shown that in Carte-
sian coordinates

1 —k(y* +22) k(x2+22)
— 232 _ p?
dst, = c*dt R(t)[ o o+ -
1 —k(y* +x?) 2kxy kxz 2kzy
+ T dzz+l kzdd krdedZ+l—kr2dZdy ,

where r? = r2(x,y,z) = x> + > + 2%, k =0, +1 or —1, and where R is a positive
function of time. Notice that both the spherical and Cartesian coordinate systems
correspond to synchronous referentials, i.e. they satisfy: go, = 0for o # 0, and con-
sequently: g,s = —7as. The spatial time-dependent tridimensional metric reads:
di?, = —ds2, + cdi’,ie.

d2. = R) 1—k(y2~1~z?~)dx,_+1—k(x2+z2)dy2

1 —kr? 1 —kr?
1 - k(?+x2) 2kxy 2kxz 2kzy
+ 72 dz* + Ty 5 dxdy + = dxdz + g dzdy

o k= —1lor+1(k+#0, Vsisnon-flat)

Let us assume that ds? = d/?,. Then, it is necessary that there exists a function
Ap(x,y,z)such that: dI* = d°A. Given such a function 4,, since —Bpdl* = d*(In¥),
we would have to seek for a function I satisfying

4 = _-Blzm[(z\/mxo )" 1/a(p)],

i.e. a function ¥ such that
In®(p,x,y,z) = —BpA,(x,y,2)) + Ina(p),

where the term «a(p) is actually unessential (it has been supposed that p varies with
time only). In particular,

%4, 2, kxy d(4,/R?) x 2
Bxay_R (t)l_kr2=> £ ——-2-1n(l-—k )+ hi(x,z)
and likewise,

&(A4,/RY)  kxz N 0(A4,/R?)
Ox0z 1 —kr? Ox

—Eln(l — kr?) + ha(x,y),
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where h; and h; are any differentiable functions, respectively independent of y and
z. However, equating the two former expressions yields

hi(x,z) = hy(x,y) = h(x), where h is independent of y and z.
Therefore, the partial derivative of 8(4,/ R?)/Ox with respect to x gives
52(A / RZ) x 2kx
oAk —kr?
On the other hand, aVl2 = d*A4,also entalls
P(Ap,/R?) 1 —k(y*+2%)
oxx  1—=krr
Thus, #'(x) = 1 +4In(1 — kr*). Obviously, the term on right-hand side depends
onyand z (k # 0) while #'(x) does not. In conclusion, the selected rectangular coor-

dinate system does not allow for a description of hyperbolic or spheric Robertson
and Walker spaces by means of any spatial wave functions ¥ as defined above.

ln(l kr?) +5

+ K (x).

e k=0(Vsisflat)

Then, di? = R%(t)[dx* + dy? + dz°], and the function A(x,y,z) = A4,(x,y,2)
= [R%(2)/2)(x® + y* + 2?) fulfills the required condition dI* = d*A4. The subsequent
equation ¥ = exp[—pBA + In a(p)] is equivalent to the search for a density p such
that

(2Vmi /+00/+00/+00 X — 11,y — ty,z — B)e P2 dyy gr, dr
— (p)exp[ ()(Xz'{— ‘|‘Zz)]

where x° = 1/(2ip) and where p eventually depends on p. In order to get a solution
p of the form: p(x, y,z) = my(x)m,(y)m,(z), we seek for a real or complex function
m, such that

+00 2
/ my(x — t)e“”z/2 dt = (2+/mixg )o!? exp [—p—Bz!—{-f} .

(o ¢]

This is written as

” 2
/+ mp(t)e—P(X2+tz—2xt)/2 dt = 2_7_" a1/3 exp [_PBR xZ:l
— B -
+o0o 5 _ )
/ mp(t)e-pﬂ/zepx: dt — /?7" a3 exp [1_1(_1_2_3_1_2_) xz] .

After the variable change t > u = —pt, we get

or
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1 +00 . ~ ,
_/ mp(—-u/p)e—uz/(ZP)e-—ux du = %7_" C!1/3 exp I:Ml }
PJ-x ? 7 2

le.
L5 = VI o' exp [P, m

where L(f,) denotes the Laplace transform of the continuously derivable function
1>(4) = my(—u/p)e /@) Conversely, f,(u) is given by the formula of Mellin—
Fourier:

1 +ioo y
W =5 [ L))" dz.
The function
r 1 pp2

is continuously holomorph on C and coincides with

(1l — BR2
X~ exp P———-—(l 2BR )xz]
onR. Thus,
1/3  p+ico 1— 2
fo(u) = +/2mp a_l;/ cxp[p( ZBR )zz}ez“ dz,
ie. (z=1iv)
1/3  p+oo 1 — BR2 )
f,,(u) = \/21!‘17 %77/ eXp [p(__z___)(_vZ)] e dv
+00 _ 2
= 1/2% al/32 exp {—Mvﬂ cos(vu) dv
0
™, e — BR?) 421 - BR%)
2 2
And finally,
(—u/p) al/3 [ —BR*? }
muyi—u - €X )
TP = =g T |2p(1 - BRY)

ie. (x = —u/p)
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all3 —BpR2
my(x) = T exp[z(1 — BRZ)XZ] .

In conclusion, the density

ﬂ'(p) XYy Z) = mp(x)mp()))mp(z)

1 1 ~BpR?
= a(p) [—————1 —~ BRZ] c:xpli——-—-————z(1 —-PBR2) O +y*+ )

givesrise to
—BpR*(1)
2

Prior to the calculation of the constant B, let us come back to the speculative inter-
pretation of ¥.

In¥ = (P +y*+2) +na(p).

e Condition for auniform “potential energy’’ term

It should be emphasized that, in general, the potential energy of the space is not
uniform, for p does not read a(p)5(x, y, z), where 8 would not depend on p. How-
ever, the latter condition is fulfilled as soon as the term B satisfies the equation

d ( BpR? —0
dp\1-BRY| 7’
i.e. BbR?/(1 — BR?*) = py, constant with respect to the variables x, y, z and p (or ¢,
or xY).
Thus, the “potential energy” of the space is uniform only if B is subjected to
vary with p as

1 1
~1+p/py B2
Since p is proportional to the reciprocal of the “‘time”, then
1 1
B=—— —
141/t R?’

where #, corresponds to pg. If 1 is interpreted as an “initial time” and #, = 0 (i.e.
Do = 00), then,

1
B = W and qg=00.
Under the above condition,
In¥ = lzl'f(x2 +y*+72) +Inap)

or
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= atp)exp| 2.

e Derivation of the constant term B
Bis to be calculated from the postulated relationship

2 +o0 —B RZ 6
| (/m uz(x,y,z) dx dy dz) . (/-OO exp [————1 _;Rz xz} dx)
B = T4 oo _BpR 12
(fomaacaras) (] "ol i) o)

By using the known result [*% e %% dx = \/r/a for a® = bpR?/1 — BR? and
a* =1BpR%*/1 — BR?, we get

3
B = q—-3 BPRZ
(1 — BR?)

In a direct interpretation of the early equation (E), ¢ is the volume of R®: replacing
g by oo in the above relationship, we are lead to the equation BR? = 1.

Therefore, the very first formulation of eq. (E) infers that the metric of flat
Robertson and Walker spaces correspond to a Schrédinger-type equation with a uni-
form “potential energy’’ term.

e Calculation of the wave function of flat Robertson and Walker spaces
With the condition BR?(¢) = 1, eq. (I) reads L(f,)(x) = v/2mp a!/3. It entails

fo(x) = 6(x)Fp(x)

where 6 denotes the Dirac distribution, and where F,(x) is a function satisfying
F,(0) = \/2mp &'/, Thus, m, (x) = 6(—px)F,(—px) - /2, and consequently,

“(pa x)y’ Z) = mp(x)mp()’)mp(z)
= 6(—px)8(—py)8(—pz) Fy(—px) Fy(—py) Fy(—pz) - L5452

The condition BR?(t) = 1 would define ¥, but not the “‘mother function” y, unless
1 is a distribution. But then

( /R K(x,,2) dx dy dz): e SO (2)6
(/123 wu(x,y,z) dx dy dz) (F,(0))

=¢36°(0) =00 unless g =ab(0).

B=gq"

As BR? = 1and R%(t) # 0, then B # oo and itis confirmed that g = oo.
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The “potential energy’’ term is calculated from the definition

ov
i—+ AV
V(,u) = -2 :i[alna(p)

=T B30 +2‘:«3}’

Remark

The expression “V(x%) = id(Ina)/dx? derived in section 3.2 for uniform
‘“potential energy” terms does not apply with the /gresent definition of a(p). The
value of V could also be derived by putting (27p)”' “a(p) in place of « in the direct
expression of V' (x?).

It is noteworthy that the “potential energy’’ term does not vanish, even if no var-
iation with time is introduced a priori, i.e. if a(p) is constant:
3i
2x0°

¥ = kexp [_12)'2] = V(Y =

4. Conclusion

It cannot be overemphasized that the application of chemical algebra to the
background of mathematical physics is purely speculative. In particular, the non-
tensorial character of eq. (E) does not receive a straightforward interpretation.
Moreover, the last speculations would be ambiguous as time and space variables
are not treated in a homogeneous manner: the statement that no space exists with-
out a time and vice versa is reflected in the definition of quadridimensional space-
time. From an axiomatic viewpoint, both the time variable and the space variables
cannot be deduced from each other, and the whole quadridimensional space-time is
to be introduced at the outset. The consequences of this principle will be developed
within the framework of chemical algebra.
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