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The generalized definition equation of a G-weighted metric ds ~ from the datum of any group 
G acting onto a vector space mapped by a continuous numerical function # is applied when 
E = R n and G = the group of translations in R n. Here, G does not act linearly in R n and R ~ is 
considered as an affine space. The solution reads ds 2 = -d2(lnI) / (Bp) ,  I = (4ircx°) n/2. ~P, 
where x ° = - i /(2p),  ~ is a solution of the Schrrdinger-type equation ,4k~ + i 0tP/0x ° = 0, and 
B is a uniform term depending on x °. When n = 3, p is interpreted as the reciprocal of a time 
variable. Attempts to identify ds 2 with the spatial part of a space-time metric of general relativ- 
ity failed except for the flat Robertson and Walker spaces. In the simplest case, B = 1/R2(t) 
and ~P(p, r) = e-pC~2. A uniform but non-constant "imaginary potential energy" of the space 
can be formally derived: V(x °) = 3i/(2x°). Despite a striking formal link with tools of physical 
mathematics, no physical validation of the propositions of chemical algebra is claimed. 

1. I n t r o d u c t i o n  

V e c t o r  t r a n s l a t i o n s  in R n a r e  n o t  l inear .  A l t h o u g h  the  t h e o r y  set  o u t  h i t h e r t o  

re fe r s  t o  l i nea r  r e p r e s e n t a t i o n s  [1-4] ,  the  de f in i t i ons  o f K e  (u, v)  a n d  ~u,v(x) c a n  a l so  

be  f o r m a l l y  a p p l i e d  t o  a n y  n o n - l i n e a r  o p e r a t i o n  o f  a g r o u p  G o n t o  a n  E u c l i d e a n  

v e c t o r  space .  H o w e v e r ,  a t t e n t i o n  h a s  t o  be  p a i d  n o t  t o  use  f o r m u l a  s u c h  as  

g ( u  + v)  = g u  + g v  o r  as  Ilgull = Ilull. R"  is a l so  c o n s i d e r e d  as a n  a f f ine  E u c l i d e a n  
space ,  a n d  the  c o n t r a v a r i a n t  n o t a t i o n  f o r  the  c o m p o n e n t s  x 1 , . . . ,  x ~ o f  a v e c t o r  u in 

R n is a d o p t e d .  

2 .  I n s i g h t s  i n t o  a g e n e r a l i z e d  e q u a t i o n  0E) f o r  a non-compact group G 

2.1. FORMAL DERIVATION OF Ou,u+du FOR THE GROUP OF TRANSLATIONS IN R" 

T h e  g r o u p  G o f  the  t r a n s l a t i o n s  in R n is n o t  c o m p a c t  a n d  n o t  f in i te  H a a r  m e a s u r e  

is a v a i l a b l e  f o r  G [5]. G is t o p o l o g i c a l l y  e q u i v a l e n t  t o  R n itself,  a n d  the  v e c t o r  o f  a 
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t rans la t ion g in G is denoted  by t in R n. In the case of  linear representat ions,  an 
opera t ion  g acts as a linear appl icat ion whose componen t s  in the canonical  basis set 
are linear forms belonging to the dual space of  Rn: by extension to affine applica- 
tions, it is therefore relevant to adopt  a covariant  no ta t ion  for the componen t s  
h , -  --, tn of  the vector t defining the t ranslat ion g. The no ta t ion  f c -  " d g  is used for 
the current  no ta t ion  of  convergent  integrals over R ~ mult ipl ied by an arbi t rary  fac- 
tor  q,/2 whose d imens ion  is the reciprocal of  a volume: if F is an integrable m a p  of  
G ~ R n and i fdT denotes  the volume element  in Rn: 

f(g) dg de~. qn/2 F( t )  d'r . . . .  f ( t l , . . . ,  tn)q n/2 dtl . . ,  dtn. 
n O 0  O 0  

The occurrence of  the symbol q~/2 is dictated by the non-availabil i ty of  a well- 
defined Haa r  measure  on a non-compac t  group: q serves the requi rement  that  
dg = q"/2dtl ... dt, must  be adimensional .  One has to keep in mind  that  q~/2 tends to 
some infinite quant i ty  when the limits of  the experienced space draw nearer  to infi- 
nity (the condi t ion  fc dg = 1 might  still be then formally satisfied). The  no ta t ion  
is formally used to justify the final formula t ion  of  the equat ion  (E) in the case of  a 
non-compac t  group.  The group of  t ranslat ions in R n is non-compact ,  and  the local 
defini t ion of~Su,v for v = u + du  reads [6] 

#u,u+au(Tds) = 1 + p B ( u ,  du)ds 2 

with 

• ds 2 = (de /7 )  2 (if 7 is formally adimensional ,  bo th  ds and der have the d imens ion  
of  a length) 

• ff 2 2 ( g u - g ( u + d u ) l k u - k ( u + d u ) )  / 
= #u'u(g)#u'u(k) IIg~---g(-ff-+ au--~ T I - ~ - - - ~ T ~ ) I I  dg dk 

6~ / 

( f c  #u,u(g ) dg)4(thisexpressionwasdenotedasB2(u, du) in ref.[6].) 

Since the equali ty g (u  + du) = gu  + gdu is no longer valid for a non-l inear  repre- 
sentat ion,  the calculation of  B(u, du  1 proceeds differently. The integral  over G 2 is 
identified with an integral over (R n) : let g denote  the vector of  the t rans la t ion g, 
and  k the vector  of  the t ranslat ion k. Then,  

(gu - g (u  + du) lku  - k (u  + du))  
Cg,g,k,k(U, U -']- du) -- [ig u _ g (u  + du)ll" I1~ - k (u  + du)ll 

( g +  u -  g -  u -  du lk  + u - k -  u -  du)  

IIg + u -  g -  u -  dull .  Ilk + u -  k -  u -  dull 
_ Ildull 2 

- -  - l .  

Ildull 2 

Thus,  
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6 ~ 

B(u, du) 2 = /Zu, u(g) dg lZu,u(g) dg . 

Using the definition of the symbol dg = q"/2dtl . . .  dtn we get 

(JfR ) 2 / ( ~  . "u'u (g)qn/2 )4  B(u, du) 2 /2 = ,#u'u(g)q ~ d h . . . d t n  d h . . . d t n  , 

(fR )2/(fR )4 B(u, du) q-~ 2 = ,/~u,u(g) d t l . . . d t n  , m,u(g) d t l . . ,  dtn . 

Since q ~ oo, B can remain finite if 
(~ )2/(~ /Zu,u(g ) )4 

b(u, du) 2 = , #u,u(g) d h . . .  dtn d t l . . ,  dtn 

is infinite too. 
The equation is written as 

~u,u+du(dcr) = 1 +pB(u,  du )ds  2 . 

B(u, du) does not depend on du, and it will be seen that the standard hypothesis 
on #u,~ entails that B(u, du) does not depend on u either. The left-hand side of eq. 
(E) reduces to 

• u,u+au(Tds) = 1 + p B ( u ) d s  2 . 

In conclusion, after calculation of the local pairing product Kp(u, u + du), the 
equation "~u,~+au(dc 0 = K p ( u , u + d u ) "  is expected to define a classical 
Riemannian metric in the selected coordinate system. 

2.2. FORMULATION OF PAIRING PRODUCTS FOR THE GROUP OF TRANSLATIONS 
INR n 

Although no conditions are precised, the definition of  Kp and eq. (E) are formally 
applied to the non-compact group of translations in E = R ". For the sake of brev- 
ity, let us define the two-variable map/~ on (R')2:/z(u, t) =/Zu,u(g), where t denotes 
the vector of a translation g. 

x; (u,. + a.) 

//z(u, t)exp[- 2 llt +u - ull 2] dr. f #(u, t)exp[- 2 llt +u + du-u - dull' ] d'r 

f /z(u , t )exp[  - p [ [ t + u + d u -  ull 2] dT. f # ( u , t )  exp[ - p [ [ t + u - u -  du[[ z] d~-' 
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where t = (tl , . . . ,  tn) (covariant vector), d~- = dtl ... dtn, and where the integral 
symbol f stretches from -oo to +oo for all the arguments tl,. • •, tn. 

X;(u,u + d.) 

{/#(u, texp[-P lltl,21 dr} 2 

f #(u, t)exp I--P llt + dull 2] d-r-f #(u, t)exp[- 2 llt- dull21 d'r 
A second-order Taylor expansion in du yields 

KP(u,u + du) ~ { /  #(u,t)e-Plltll2/2 d'r}2/ 

( /  #(u,t)e-Plltll2/2[1 [[dul[2-p(t[du) +~(t,du)21dT 

- P  P2 (t[du)2] d~-) x/#(u,t)e-plltll2/2[1 ~lldul[ 2 +p(t ldu)+~- 

Let us define the integrals: 

I=S#(u,t)e-plltll'12dT" ; J =/#(u,t) (t ..du..~e-#lltll'12dm; 
\ I Ildull/ 

2 / (t du ~ e-plltll2/2d~-. 
K =  #(u,t) \ IIIdulU 

Then, 
Kpp(~, u + au) 

12 

{I [1-21[du[]2]-pJ[[du[[+ ~ K[[du[[2}{I [1-P I[du[[ 2] +pJ[[du][+ ~ K[[du[[2 } ' 

KpP(U, u + du) 
1 

p2 p2 Kllaull2 } , P _p_J/,[du[ I +~- K[[du[[2} {1-P][dull2 +p 

K#(u, u + au) 

, p. 
- P~ I"°" ~ - p ~"'u" + ~ 7 " ' < -  P " ' <  + "~ II.o, + ~ -7 " ' < -  . '  "'°1' ~ 
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1 
K~(u,u + au) .~ 

l - p  l - p - ~ + p  7 Ildulf 

And finally, 

K f f ( u , u + d u ) ~ l + p  1 - p K + p  ~ Ildull 2, 

2.3. G-WEIGHTED METRICS OF THE GROUP OF TRANSLATIONS IN R n 

From the preceding sections, the definition equation (E) of do a = (Tds) 2 is writ- 
ten down by equating Kff(u, u + du) with ~u,u+au(Tds) = 1 +pq-nb(u)ds2: 

ds2- B(u)1 - p T + p  Ildulf. 

Since  u = ( x l , . . . ,  x~), (tldu) = ~ tax  i, dr = dt l . . ,  dt,, Ildull 2 = ~(dxi) 2, let  

Ji = / #(u, t)tie -plltl12/2 dr, 

Ki = / #(u, t)~e -pllt[12/2 dr, 

Lij = f #(u, t)titje -plltl12/2 dr 

Then, 

t 2 

l <~i<~n 

(with Lii = Ki). 

J?(d~) 2 + 2 
l <~i<~n 

~ a ~ a x J  
<~ <<. n 

J , 4 . a x ' d x J  . 
1 <.i<j<~n 

Likewise, 

KIIdull 2 = ~ Ki(dxi) 2 + 2 E LO "dxidxj" 
1 ~i<<.n 1 <~i<j<~n 

Thus, 

B(u)ds 2 = £ 1 - p - T +  p (dxi) 2 + 2p 
i=l 1 <~i<j<<.n 
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This expression is now simplified by using an integration by part in J~: 

-- f ,(o, --1 / 
P 

× #(u, t l , . . . ,  tn)(--pti)e -p~/2 dti -~i' 

j,= - i f  e_P(lltll2_t~)/2{[#(U, tl t ~e -p~/21t'=+°° 
P , -  • • ~ n l  ] t i = - - o o  

_ ft'=+°° O# } d r  
at,=-oo ~ i  (u 'q ' ' ' ' ' t n )e -p~/2dt i  dti " 

If  we assume #(u, t l , . . . ,  tn)e -p~/2 ~ O, then, 
t,-~oo 

1 f O# , t~)e_plrttl2/2 Ji =p j - ~ i  (U, tl, . . . dr. 

Likewise, it is easily shown that under the same condition, if i ¢ j ,  

Z / j = y l  f ~02# (U, tl, , tn)e -plltl12/2 dr 

and if i = j ,  

K i = L i i = p l f (  " + P  ~,~ 1 02#)(U, t l , . .  -, tn)e_Plltll2/2d.r. 

Therefore, the expression ofds 2 becomes homogeneous: 

B(u)a; 

Oti -~j 
"= j = l  i2 

f 02# e_plltll2/2 dr l dxidx j OtiOtj 
I 

Generally speaking, a relevant form of/zu,v(g) has been propounded, namely [7]: 
#u,v(g) = m(g)Tr(gu)Tr(gv). Thus, #u,u(g) = m(g)Tr2(gu), where m and 7r are one- 
variable maps of G and R n, respectively. Assuming re(g) = 1 (all translations are 
"equally possible"), the function #(u, t) defined on E 2 = R 2~ is to have the form 

#(u, t) = # ( x 1 , . . . ,  x n ,  t l , . .  • , tn) = 7r2(u + t) = # ( x  1 --I- t l , . . . ,  x n + tn), 

where ~ (y )  = #(y) is a now a function of the argument y = (y l , . . . ,  y~) e E = R ". 
This assumption entails two consequences: 
a) B(u) is a constant: 
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)7 B = q-" .1~2 (X 1 ..1_ h , - - . ,  xn + tn) dh . . .  dt, 

( fR )4 . ~(x I + h , . . . ,  x ~ + t , )  d h . . .  dtn (for u = (x l , . . . ,  x'n)) 

(fR ) 2 / ( f R  )4 =q-n  lz2( t l , . . . , tn)  d h . . . d t n  IZ(t l , . . . , tn)  dr1 . . .d tn  

which is independent of u.  

b) It renders the integrals I, J~, Lij convolution products. Then, 

- -  ~ y i  O].Z , 1 . . . , tn ) 0/Z(X1, .,X n, t l , . . . , tn)  = (U-Jr-t) = ~ t X , . . . , X  n,tl, 
Oti "" 

and subsequently 

OI 021 
J~ = ~ ; Lo  - OxiOxJ • 

Thus, 

BW~ 1 n £{01 O' 02I I 
= -  / b 7 1 .  OxTOx/ dx'dxJ 

P j = l \  I2 

_ 

-- n z_., z_., cgdcgrJ dxidxJ ' r i=1 j=l . . . . . .  
where 

I = / #(u + t)e -Ntll=/2 dr  : / Fz(u- t)e -Ntl[=/2 dr .  

In conclusion, ds a is an "exact second differential" defined by 

I - B P  d2(ln I) 
ds 2 

It must be stressed that this definition refers to the given "rectangular" coordinate 
system initially selected to formulate eq. (E). Although In I is supposed to be a sca- 
lar tensor, it is known that 02(lnI)/OxiOxJ is neither a (0, 2), a (2, 0) nor a (1, 1) ten- 
sor (in contrast, the gradient 0(ln I ) /Ox  i is a covariant (0, 1) tensor). The bordered 
definition has no tensorial character, that is, in another coordinate system {:di}, 
the linear element 

Ox* ox  h 0 2(in z) dx,~dx,J 
d°'2 ~ Ox '~ Ox'J OxhOx k 
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Remark  
This point and the differential formulation of ds 2 naturally prompt us to attempt 

to replace the ordinary differential of the equation by a covariant derivative in 
order to formulate an analogous tensorial definition of ds 2 [8]. Indeed, the preced- 
ing equation can be written as: - B p d s  2 =d(Vh( ln I )dxh) ,  where Vh(lnI) 
= 0(ln I ) / 0 x  h is the gradient of In I. Since Vh (ln I) is a covariant tensor, a tensorial 
differential equivalent is defined through the covariant derivatives of the compo- 
nents Vh (ln I), 1 ~< h ~< n. Thus, a tensorial definition of ds 2 might be given by: 
- B p d s  2 = D(Vh(lnI)dxh) ,  where D denotes the absolute differential of a tensor. 
However, this attempt is fruitless. Indeed, 

02(lnI) ,_, ,, O(lnI) 
D(Vh( ln I )dx  h) = (Vh(lnI))lkdx~dxh, Vh(lnI)lk -- 0xh0xk q-~h k ~ , 

where I'h"k denote the Christoffel symbols of the second kind with respect to the 
symmetric covariant tensor field ghk to be determined: 

F h m k  = g l m F h l  k 

(where g/m is the contravariant reciprocal of gtm: gitg 1" = ~m), 

[Oglk Oglh  Oghk] (Christoffel symbols of the first kind).  = LS- - 
Thus, the equation reads --Bpghk = (Vh (ln I))I~' i.e. 

02(ln/) ,~ m O(lnI) 
--Bpghk -- OX~OXk +~t h k ~ , 

where the ghk'S are unknown for a given function In I. 
Since the affine connection corresponding to gij is symmetric, the covariant deri- 

vative of gij expressed in terms of this particular connection vanishes identically, 
i. e.: ghkli = 0 (Ricci' s lemma). Thus, if Bp ¢ 0, (Vh (ln I) )lkl i = 0. 

On the other hand, the Ricci's identity for a covariant vector field Yh is written 
a s  

- - g h l k i  YI - S k l i  Yhll = Yhlkli - -  Yhlilk , 

where Khtki denotes the curvature tensor and Skli denotes the torsion tensor. Since 
the Christoffel symbols are symmetric, Skti = 0, and the Ricci's identity boils down 
to: --ghtki Yt = Yhlkli -- Yhlilk. Let us apply this identity for Yh = Vh(ln I): 

--ghlki'~l(ln I) = Vh (ln I) lkli -- Vh (ln I)[ilk = 0 --  0 = O. 

The equality Khtki Yt = 0 is a necessary and sufficient condition to be satisfied by a 
parallel covariant vector field Yh on a curved space such that ghlki Yl ¢ O. There- 
fore, Vh (In I) is a parallel gradient, i.e.: Vh (In I)Ik = 0. Consequently, if we suppose 
B p ¢ O ,  
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1 
g h k - -  b p ( V h ( l n I ) ) l k = O  and ds 2 = 0 .  

In conclusion, the sole (non-zero!) metric that might be tensorially represented as 
an absolute second differential corresponds to a flat space (where K J k i  Yt = 0)! 

3. Specu la t ions  for  an  in te rp re ta t ion  o f  I a n d  ds 2 

3.1. ON THE EXTENSION OF THE EQUATION (E) FOR COMPLEX VALUES OF p AND ~z 

It appears not  straightforward to formulate a natural extension of eq. (E) entail- 
ing a (positive or negative) real solution ds a for complex-valued functions Fz and/  
or for imaginary parametersp '  = ip, p ~ R [9]. Therefore, the simplest formal exten- 
sion of  (E) is considered for complex values o f #  andp '  = ip, even though the solu- 
tion ds 2 is no longer real. 

Replacing p by p' = ip and the real function #(u  - t) by a complex counterpart  
in (E), the same derivation leads to 

d2(lnI)  
- i B p  = ds 2 , 

where the condition #(u, tl tn)e -ipt~/2 ~ 0 is satisfied by requiring that  # 
" " " ~ t i " * O o  

is regular enough and vanishes at infinity, i.e.: #(u, h , . . . ,  t , )  ~ t, ~ ~ O. 

3.2. CONNECTION WITH THE FORMALISM OF QUANTUM MECHANICS 

Settingp' = 1/2x ~, we recognize that  if/~ does not depend onp,  the product  

g, = (2 ~x/7~x'0 ) -" .  I 

is a generic solution of the equation of  the heat (x '° varies as the time variable t, 
and g' represents the temperature) [10]: 

&v 
Ox,-.--- 6 - Aft, = 0, 

where A is the Laplace operator: A = V 2 =  0 2 / ( a x l ) 2 + . . .  + a2/(0xn) 2. For- 
mally, if x '° is no longer a real number  but a pure imaginary number (x '° = i x  °, x ° 
real), then, this equation is a Schr6dinger-type equation: 

• 0~' 
z 0 x  o = - A ~ , ,  

where the Hamil tonian reduces to the Laplacian kinetic term: no potential term 
takes place. However, in the preceding treatment, p and B are considered as con- 
stant parameters.  The function # is therefore allowed to depend onp.  Suppose that  
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# has the form: #(y) = a(p)/3(y) where a(p) does not depend on y and where/3(y) 
does not depend onp. Then, g ' /a  is still a generic solution of the above Schr6dinger- 
type equation forp = - i / 2 x  °, and therefore ~ is a generic solution of a Schr6dinger- 
type equation with a uniform term: 

z~--~ 0 ( ~ ) = - A ( ~ - ) ,  k~(x°=O,x,y,z)=e~(p=ioo)#(x,y,z) 

.Off* --Ak~ + V(x°)ff~ = Hg', with V(x °) = i d( lna)  
t 0 x  0 = dx 0 

In quantum mechanics, a wave function accross the whole space is associated with 
a particle (or a system of particles) which is endowed with a fixed set S of extensive 
parameters (mass, charge, spin, etc.) and which is subjected to an external intensive 
potential P. S and P give rise to a potential energy V of the particle. Since the space 
is defined by its filling (e.g. the vacuum as a borderline case), a wave function might, 
in turn, be associated with the space itself. Such a wave function would be defined 
by a Schr6dinger-type equation. 

In order to interpret the two previous examples as borderline cases of a more gen- 
eral interpretation, it can be naturally suggested that the quantity 

0kv a e  

V ( x  °, u) - 

represents some kind of complex "potential energy of the space". In other words, 
g' is a solution of the Schr/Sdinger-type equation Hg' + iOff'/Ox°= O, where 
H = T + V is a Hamiltonian operator with a complex "potential energy" term 
(which now depends on both time- and space-coordinates). The function # essen- 
tially determines this potential energy in that sense that V(p, u) = 0 if # does not 
depend on p and that V(p, u) is uniform (i.e. only "time-dependent") if # has the 
form#(y)  = c~(p)/3(y). 

3.3. CONNECTION WITH THE FORMALISM OF GENERAL RELATIVITY 

General relativity states that the space-time is a Riemannian manifold endowed 
with m e t r i c  gijdxidx j (i = 0, 1, 2, 3) which is determined by the mass-energy flow 
entering the Einstein equations. The datum of a "spatial wave function" in the 
(non-physical) equation -Bpds 2 = d 2 In k~ defines a "complex metric" ds 2, the real 
part of which might be identified with the spatial part of a space-time metric at 
each time-like parameter p = - i / 2x  °. However, this speculative analysis does not 
give a complete space-time-like metric, for the variable "time" is not represented in 
the vector u (u is not a 4-vector). 
Direct problem. We are given some affine scalar of a real Euclidean space Tn, which 
is to be expressed in some rectangular coordinate system { x l , . . . , x  ~} by: #: 
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R"- -+R (or C). The expressions ~u,u+du(X) and Kp(u,u + du) are then written 
down for the group of translation of T~, at each point u marked by ( x l , . . . ,  x ~) in 
R~: eq. (E) is then solved, and a linear element ds 2 is brought up. The pair (R ", ds 2) is 
interpreted as one description of a Riemannian manifold X, in the same way as 
(Rn ,ds  2) is a description of the affine Euclidean space Tn (where d~ = ( d x l )  2 

+ . . .  + 

Equation (E) would play two roles: 

(a) it introduces a supplementary "time coordinate",p; 

(b) it transforms the flat space Tn into a distorted (curved) space X~. 

Equation (]E) can be regarded as an application of a "time" variable onto an affine 
space, where # plays the role of an "ini t ial  da tum" .  A translation t makes a connec- 
tion between two points of T,. A component t; operates independently on each 
direction "i",  like a "time potential" which generates the possible motion 
x i --~x i + ti in T, along the direction "i". The " t ime  coordinate" x ° = 1/(2p) would 
then be defined from the action of the group of translations in R 3 and the corre- 
sponding equation (E). 

Converse problem.  We are now given a space-time metric gijdxidx j (i = 0, 1, 2, 3) 
issued from the Einstein equations, the pure spatial part being denoted 
dl 2 = 7 ~ d x ~ d x  ~ (0 ¢ a , /3  = 1, 2 or 3: "y~ = - g ~  + go~go~/goo) [11]. We search 
for a corresponding wave function ~ (or its "initial datum" #), and more precisely, 
for one coordinate system {x"} of X, satisfying: 

(a) the open set ofR 4 covered by the x/'s is R 4 in its entirety; 

(b) the expression of dl 2 in this coordinate system is a solution of some equation 
(E) written down for the group of translations in R 3 and for a function # of the 
x~'s. From the preceding section, it follows that this condition is equivalent to 
the existence of a function A ( x  °, x 1 , x 2, x 3) such that: dl 2 = d~A, where dff refers 
to the three space coordinates only, i.e. 

02A 
~/~ - Ox~Ox~ a,/3 = 1,2, 3 (six terms). 

Example :  search f o r  space wave func t ions  o f  Rober tson and  Walker  spaces 
It must be henceforth stressed that the convolution form for ~ does not allow 

for describing the simplest non-flat space in rectangular coordinates. Robertson 
and Walker space-times are compared with a completely isotropic perfect fluid. 
Indeed, the metric of such spaces is given in spherical coordinate, by 
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I dr 2 + t2(dO 2 + sin0d~b2)] dgw = c2dt ~ - RR(t) 1 - kr-----~ 

(here: x ° = ct or ict, k = 0, 1 or -1 ,  and the Riemannian curvature equals 
k /R2 ( t ) ) .  

Since dx  2 + dy 2 + dz 2 = dr 2 + r2dO 2 + r 2 sin 0 d~ 2, it can be shown that in Carte- 
sian coordinates 

d g  w = c2dt 2 _ R2(t ) [1 - i k(y2-- -k-fi + z2) dx2 + 1 - 1 k(x2- kr 2 + z2) dy2 

1 - -  k ( y  2 + X2) dz2 + ~ _ ~ & a y  + &dy  , 
+ 1 - kr  2 I - xr  1 - kr  2 I - Kr .1 

where r 2 = r2 (x , y , z )  = x 2 +y2 +z2, k = 0, +1 or -1 ,  and where R is a positive 
function of time. Notice that both the spherical and Cartesian coordinate systems 
correspond to synchronous referentials, i.e. they satisfy: go~ = 0 for a ¢ 0, and con- 
sequently: g ~  = -~'c~. The spatial t ime-dependent tridimensional metric reads: 
dl~ 2 = -dsr2w + c2dt 2, i.e. 

dlr2w = R2(t) II -k(Y2l - kr  2 + z2) dx2 + 1 - k ( x  2 1  - kr  2 + z2) dy2 

2 k x y  2kxz  2kzy  ] 1 - k(y 2 + x 2) dz 2 ~ dxdy ~ - -  dxdz ~ & d y  
4 1 - k r  2 1 ~-~r 2 1 - kr  2 1 ~-kr  2 J " 

• k = - 1  o r + l  (k ¢ 0, V4 isnon-flat) 
Let us assume that ds 2 = dl]w. Then, it is necessary that there exists a function 

Ap(x,  y, z) such that: d l  2 = d2A. Given such a function Ap, since - B p d l  2 = dZ(ln ~P), 
we would have to seek for a function I satisfying 

_ l p l n [ ( 2 ~ ) _ . .  I/~(p)], Ap 

i.e. a function ~P such that 

In ~V(p, x, y, z) = - B p A p  (x, y, z)) + In a (p) ,  

where the term a(p) is actually unessential (it has been supposed tha tp  varies with 
time only). In particular, 

02Ap _ R2(t ) k x y  O(Ap/R  2) 21n(1 - k r  2) + h l ( x , z )  
OxOy 1 - 5 =~ Ox - 

and likewise, 

02(Ap/R 2) kxz  O(Ap/R 2) 
OxOz 1 - kr  2 Ox 

21n(1 - kr  2) + h2(x ,y)  , 
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where hi and h2 are any differentiable functions, respectively independent o fy  and 
z. However, equating the two former expressions yields 

hi(x, z) = h2(x,y) = h(x), where h is independent of y and z. 

Therefore, the partial derivative of O(Ap/R2)/Ox with respect to x gives 

x 2kx 
02(Ap/R2) - - ln(1 - kr 2) + 2 1 - k r  2 ~- if(x) 

OX 2 

On the other hand, dl 2 = d2Ap also entails 

om(Ap/R ~-) _ 1 - k(y 2 4- z 2) 
OX 2 1 -- kr 2 

Thus, if(x) = 1 +11n(1 -k ra ) .  Obviously, the term on right-hand side depends 
ony  and z (k ¢ O) while h'(x) does not. In conclusion, the selected rectangular coor- 
dinate system does not a110w for a description of hyperbolic or spheric Robertson 
and Walker spaces by means of any spatial wave functions ~ as defined above. 

• k =  0(V4isflat) 
Then, dl = = R2(t)[dx 2 + dy 2 + dz2], and the function A(x,y ,z)  = Ap(x,y,z) 

= [R2(t)/2] (x 2 + y2 + z 2) fulfills the required condition dl 2 = d2A. The subsequent 
equation ~P = exp[-pBA + In a(p)] is equivalent to the search for a density/z such 
that 

( 2 ~ ) - 3  /~(x-  tl, y - t2, z -  t3)e-p(t~+t~+~ )/2 dh dt2 dt3 
O o  O 0  o O  

2 

where x ° = 1/(2ip) and where ~ eventually depends onp. In order to get a solution 
of the form: #(x, y, z) =mp (x)mp (y)mp (z), we seek for a real or complex function 

mp such that 

mp(x t)e -pe/2 dt (2 ~X/~0)a l/3exp - p  2 - -  ~ 2 2 . 

This is written as 

i+°°rnp(t)e-,(~+t~-2xt)/Z dt = ~ aU3 expI_PB2R2x 2] 

o r  

f T m p ( t ) e - p t ~ 1 2 e p X t d t = ~ a l l 3 e x p [ p ( 1 2 B R 2 ) x 2  ] , 

After the variable change t --~ u --- -pt ,  we get 
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i.e. 

1 [  +°° ~ [ p(1-BR2)x2] P J-oo mp(-U/p)e-~/(2P)e-UX du = a 1/3 exp 2 

L(fp)(X)= 2X/~al/3explp(1 2 -BR2) x2], (I) 

where L (fp) denotes the Laplace transform of the continuously derivable function 
fp(u) = mp(-u/p)e -~/(2p). Conversely, fp(u) is given by the formula of Mellin- 
Fourier: 

1 f+ioo 
fAu) = ~ J-ioo ~)(z)eZU dz. 

The function 

z---~ explp(1-BR2)z21 
2 

is continuously holomorph on C and coincides with 

x--+ exp I-P(1 2BR2) x2 ] 

on ltL Thus, 

al/3 f+i°°exp[p(1- BR2) z2]e TM dz, 
fp(u) = 2X/~ ~ J-ioo 2 

i.e. (z --- iv) 
al/3 f+~ [_p(1-BR 2) ] 

fp(U) = 2 X / ~ -  t exp (-v 2) e i~ dv 
27r J-oo 2 

=~c~l/32f+°°exp[ P(1-BR2) 2 v2J cos(vu) dv 

[4 ] =~P~al/32~P(I'~-2BR2) exp p(I-_BR2) " 

And finally, 

m A - u / p )  - -  
v/1 _ BR 2 

[ 1 exp [2p-(i Z-B--R2)j, 

i.e.(x--- -u/p) 
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otl/3 r -BP R2 1 
rap(x) -- x/1 - BR 2 exp [2( 1 - BR2) x2J " 

In conclusion, the density 

#(p, x, y, z) = mp(x)mp(y)mt,(z ) 

- -a(p)  [ 1 - 1 R 2 ]  3/2exp [2( 1 [  _ B p R  2 _  BR2) ] 
- + + :)] 

gives rise to 

lnff~ -- -BpR2(t)2 (x2 +y2 + z 2) + In a(p) 

Prior to the calculation of the constant B, let us come back to the speculative inter- 
pretation ofg'. 

• Condition for  a uniform "potentialenergy" term 
It should be emphasized that, in general, the potential energy of the space is not 

uniform, for # does not read a(p)fl(x, y, z), where/3 would not depend onp. How- 
ever, the latter condition is fulfilled as soon as the term B satisfies the equation 

dp l, l - BR 2 = 0 '  

i.e. BpR2 / (1 - BR 2) = Po, constant with respect to the variables x, y, z and p (or t, 
or x°). 

Thus, the "potential energy" of the space is uniform only if B is subjected to 
vary withp as 

1 1 
B - -  

1 +P/Po R 2 

Sincep is proportional to the reciprocal of the "time", then 

1 1 
B -  - -  

1 + to/t R 2 ' 

where to corresponds to P0. If to is interpreted as an "initial time" and to = 0 (i.e. 
P0 = oe), then, 

1 
B -- R2(t ) and q = o o .  

Under the above condition, 

In k~ = ~ (x 2 + y2 + z 2) + In c~(p) 

or  
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<,, o0,,exp } 

Derivation o f  the constant term B 
B is to be calculated from the postulated relationship 

(L )2 ( f + o o  [ x-BR2r-BpR=]' )6 #2 (X, y, Z) dx dy dz exp . . . .  x- B = q-3 , _ q-3 j dx 

(L3#(x,y,z) dxdydz) 4 ( /7 r "'":expL2(1 -- BR 2) x2] dx) 12" 
By using the known result f~-_~e-a2X2dx = v/-~/a for a 2 =  b p R 2 / 1 -  BR 2 and 
a 2 = ½BpR2/1 - BR a, we get 

_Bp R 2 . ] 3  

q-3 LTr( 1 [  _ BR2)J 
B= 

In a direct interpretation of the early equation (E), q is the volume of R 3: replacing 
q by oo in the above relationship, we are lead to the equation BR 2 = 1. 

Therefore, the very first formulation o f  eq. (E) infers that the metric o f  f lat  
Robertson and Walker spaces correspond to a Schr6dinger-type equation with a uni- 
f o r m  "po ten tial energy" term. 

• Calculation of  the wave function offlat Robertson and Walker spaces 
With the condit ion BR2(t) = 1, eq. (I) reads L(fp)(x) = 2 x / ~  aW3. It entails 

fp(x) = ~5(x)Fp(x), 

where 6 denotes the Dirac distribution, and where Fp(x) is a function satisfying 
Fp(0) = 2v/2 ~ a 1/3. Thus, mp(x) = 6 ( - p x ) F p ( - p x ) .  e p~/2, and consequently, 

Iz(p, x, y, z) = mp(x)mp(y)mp(z) 

= 6 ( - p x ) 6 ( - p y ) 6 ( - p z ) F p ( - p x ) F p ( - p y ) F p ( - p z ) .  e °(~+~+z2)/2 . 

The condit ion BR2(t) = 1 would define ~, but not  the "mother  funct ion" #, unless 
# is a distribution. But then 

#2 (x, y, z) dx dy dz 
B = q - 3  ' = q_3 (6(0)F2(0)) 6 

( ~  # (x ,y , z )  a x d y d z )  4 (Fp(0))12 

= q-363(0) = ~ unless q = a 6 ( 0 ) .  

As BR 2 = 1 and R2(t) ¢ 0, then B ¢ cx~ and it is confirmed that q = exp. 
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The "potent ia l  energy"  te rm is calculated f rom the definit ion 

0kv 
i ~ - - ~ + A ~  [ ~x~(p 3 ]  

V(x  ° , u ) -  g, - i  01 ) + ~  . 

R e m a r k  

The  expression " V ( x  °) = i d ( lna ) /dx  °'' derived in section 3.2 for un i fo rm 
"potent ia l  energy" terms does not  apply with t h e p r e s e n t  defini t ion of  a(p) .  The  
value of  V could  also be derived by put t ing  (2rrp)3/2a(p) in place of  a in the direct 
expression of  V(x°). 

It  is no tewor thy  that  the "potent ia l  energy" te rm does not  vanish, even if no  var- 
ia t ion with t ime is in t roduced  apriori, i.e. if oe(p) is constant :  

~p= ~exp[ -p_~]  ~ V(x0) = 3i 
2x 0" L z J 

4. C o n c l u s i o n  

It  canno t  be overemphasized that  the appl icat ion of  chemical  algebra to the 
b a c k g r o u n d  of  mathemat ica l  physics is purely speculative. In part icular ,  the non-  
tensorial  character  of  eq. (E) does not  receive a s t ra ight forward  interpretat ion.  
Moreover ,  the last speculat ions would  be ambiguous  as t ime and  space variables 
are not  t reated in a homogeneous  manner :  the s ta tement  that  no space exists with- 
out  a t ime and vice versa is reflected in the defini t ion of  quadr id imens iona l  space- 
time. F r o m  an axiomatic viewpoint, both  the t ime variable and the space variables 
canno t  be deduced f rom each other, and  the whole quadr id imens ional  space-t ime is 
to be in t roduced  at the outset.  The  consequences of  this principle will be developed 
within the f r amework  of  chemical algebra. 
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