Chemical algebra.
 VI: G-weighted metrics of non-compact groups: group of translations in the Euclidean space

Remi Chauvin
Laboratoire de Chimie de Coordination du C.N.R.S., Unité 8241, liée par convention à l'Université Paul Sabatier et àl'Institut National Polytechnique, 205 Route de Narbonne, 31077 Toulouse Cedex, France

Received 16 September 1994

Abstract

The generalized definition equation of a G-weighted metric $d s^{2}$ from the datum of any group G acting onto a vector space mapped by a continuous numerical function μ is applied when $E=R^{n}$ and $G=$ the group of translations in R^{n}. Here, G does not act linearly in R^{n} and R^{n} is considered as an affine space. The solution reads $d s^{2}=-d^{2}(\ln I) /(B p), I=\left(4 i \pi x^{0}\right)^{n / 2} \cdot \Psi$, where $x^{0}=-i /(2 p), \Psi$ is a solution of the Schrödinger-type equation $\Delta \Psi+i \partial \Psi / \partial x^{0}=0$, and B is a uniform term depending on x^{0}. When $n=3, p$ is interpreted as the reciprocal of a time variable. Attempts to identify $d s^{2}$ with the spatial part of a space-time metric of general relativity failed except for the flat Robertson and Walker spaces. In the simplest case, $B=1 / R^{2}(t)$ and $\Psi(p, r)=e^{-p r^{2} / 2}$. A uniform but non-constant "imaginary potential energy" of the space can be formally derived: $\mathrm{V}\left(x^{0}\right)=3 i /\left(2 x^{0}\right)$. Despite a striking formal link with tools of physical mathematics, no physical validation of the propositions of chemical algebra is claimed.

1. Introduction

Vector translations in R^{n} are not linear. Although the theory set out hitherto refers to linear representations [1-4], the definitions of $K_{p}(\mathbf{u}, \mathbf{v})$ and $\Phi_{\mathbf{u}, \mathbf{v}}(x)$ can also be formally applied to any non-linear operation of a group G onto an Euclidean vector space. However, attention has to be paid not to use formula such as $g(\mathbf{u}+\mathbf{v})=g \mathbf{u}+g \mathbf{v}$ or as $\|g \mathbf{u}\|=\|\mathbf{u}\| . R^{n}$ is also considered as an affine Euclidean space, and the contravariant notation for the components x^{1}, \ldots, x^{n} of a vector \mathbf{u} in R^{n} is adopted.

2. Insights into a generalized equation (\mathbb{E}) for a non-compact group G

2.1. FORMAL DERIVATION OF $\Phi_{u, u+d u}$ FOR THE GROUP OF TRANSLATIONS IN R^{n}

The group G of the translations in R^{n} is not compact and not finite Haar measure is available for G [5]. G is topologically equivalent to R^{n} itself, and the vector of a
translation g in G is denoted by t in R^{n}. In the case of linear representations, an operation g acts as a linear application whose components in the canonical basis set are linear forms belonging to the dual space of R^{n} : by extension to affine applications, it is therefore relevant to adopt a covariant notation for the components t_{1}, \ldots, t_{n} of the vector t defining the translation g. The notation $\int_{G} \ldots d g$ is used for the current notation of convergent integrals over R^{n} multiplied by an arbitrary factor $q^{n / 2}$ whose dimension is the reciprocal of a volume: if F is an integrable map of $G \approx R^{n}$ and if $d \tau$ denotes the volume element in $R^{n}:$

$$
\int_{G} F(g) d g \stackrel{\text { def. }}{=} q^{n / 2} \int_{R^{n}} F(\mathbf{t}) d \tau=\int_{-\infty}^{+\infty} \ldots \int_{-\infty}^{+\infty} F\left(t_{1}, \ldots, t_{n}\right) q^{n / 2} d t_{1} \ldots d t_{n}
$$

The occurrence of the symbol $q^{n / 2}$ is dictated by the non-availability of a welldefined Haar measure on a non-compact group: q serves the requirement that $d g=q^{n / 2} d t_{1} \ldots d t_{n}$ must be adimensional. One has to keep in mind that $q^{n / 2}$ tends to some infinite quantity when the limits of the experienced space draw nearer to infinity (the condition $\int_{G} d g=1$ might still be then formally satisfied). The notation is formally used to justify the final formulation of the equation (\mathbb{E}) in the case of a non-compact group. The group of translations in R^{n} is non-compact, and the local definition of $\Phi_{\mathbf{u}, \mathbf{v}}$ for $\mathbf{v}=\mathbf{u}+d \mathbf{u}$ reads [6]

$$
\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(\gamma d s)=1+p B(\mathbf{u}, d \mathbf{u}) d s^{2}
$$

with

- $d s^{2}=(d \sigma / \gamma)^{2}$ (if γ is formally adimensional, both $d s$ and $d \sigma$ have the dimension of a length)
$\bullet B(\mathbf{u}, d \mathbf{u})=\iint_{G^{2}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}^{2}(k) \frac{(g \mathbf{u}-g(\mathbf{u}+d \mathbf{u}) \mid k \mathbf{u}-k(\mathbf{u}+d \mathbf{u}))}{\|g \mathbf{u}-g(\mathbf{u}+d \mathbf{u})\| \cdot\|k \mathbf{u}-k(\mathbf{u}+d \mathbf{u})\|} d g d k /$

$$
\left(\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) d g\right)^{4} \text { (this expression was denoted as } B^{2}(\mathbf{u}, d \mathbf{u}) \text { in ref.[6].) }
$$

Since the equality $g(\mathbf{u}+d \mathbf{u})=g \mathbf{u}+g d \mathbf{u}$ is no longer valid for a non-linear representation, the calculation of $B(\mathbf{u}, d \mathbf{u})$ proceeds differently. The integral over G^{2} is identified with an integral over $\left(R^{n}\right)^{2}$: let g denote the vector of the translation g, and \mathbf{k} the vector of the translation k. Then,

$$
\begin{aligned}
C_{g, g, k, k}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) & =\frac{(g \mathbf{u}-g(\mathbf{u}+d \mathbf{u}) \mid k \mathbf{u}-k(\mathbf{u}+d \mathbf{u}))}{\|g \mathbf{u}-g(\mathbf{u}+d \mathbf{u})\| \cdot\|k \mathbf{u}-k(\mathbf{u}+d \mathbf{u})\|} \\
& =\frac{(\mathbf{g}+\mathbf{u}-\mathbf{g}-\mathbf{u}-d \mathbf{u} \mid \mathbf{k}+\mathbf{u}-\mathbf{k}-\mathbf{u}-d \mathbf{u})}{\|\mathbf{g}+\mathbf{u}-\mathbf{g}-\mathbf{u}-d \mathbf{u}\| \cdot\|\mathbf{k}+\mathbf{u}-\mathbf{k}-\mathbf{u}-d \mathbf{u}\|} \\
& =\frac{\|d \mathbf{u}\|^{2}}{\|d \mathbf{u}\|^{2}}=1
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& B(\mathbf{u}, d \mathbf{u})=\iint_{G^{2}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) \mu_{\mathbf{u}, \mathbf{u}}^{2}(k) \cdot 1 \cdot d g d k /\left(\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) d g\right)^{4}, \\
& B(\mathbf{u}, d \mathbf{u})=\left(\int_{G} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) d g\right)^{2} /\left(\int_{G} \mu_{\mathbf{u}, \mathbf{u}}(g) d g\right)^{4}
\end{aligned}
$$

Using the definition of the symbol $d g=q^{n / 2} d t_{1} \ldots d t_{n}$ we get

$$
\begin{aligned}
& B(\mathbf{u}, d \mathbf{u})=\left(\int_{R^{n}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) q^{n / 2} d t_{1} \ldots d t_{n}\right)^{2} /\left(\int_{R^{n}} \mu_{\mathbf{u}, \mathbf{u}}(g) q^{n / 2} d t_{1} \ldots d t_{n}\right)^{4} \\
& B(\mathbf{u}, d \mathbf{u})=q^{-n}\left(\int_{R^{n}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) d t_{1} \ldots d t_{n}\right)^{2} /\left(\int_{R^{n}} \mu_{\mathbf{u}, \mathbf{u}}(g) d t_{1} \ldots d t_{n}\right)^{4}
\end{aligned}
$$

Since $q \approx \infty, B$ can remain finite if

$$
b(\mathbf{u}, d \mathbf{u})=\left(\int_{R^{n}} \mu_{\mathbf{u}, \mathbf{u}}^{2}(g) d t_{1} \ldots d t_{n}\right)^{2} /\left(\int_{R^{n}} \mu_{\mathbf{u}, \mathbf{u}}(g) d t_{1} \ldots d t_{n}\right)^{4}
$$

is infinite too.
The equation is written as

$$
\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(d \sigma)=1+p B(\mathbf{u}, d \mathbf{u}) d s^{2}
$$

$B(\mathbf{u}, d \mathbf{u})$ does not depend on $d \mathbf{u}$, and it will be seen that the standard hypothesis on $\mu_{\mathbf{u}, \mathbf{u}}$ entails that $B(\mathbf{u}, d \mathbf{u})$ does not depend on \mathbf{u} either. The left-hand side of eq.
(\mathbb{E}) reduces to

$$
\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(\gamma d s)=1+p B(\mathbf{u}) d s^{2}
$$

In conclusion, after calculation of the local pairing product $K_{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$, the equation " $\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(d \sigma)=K_{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$ " is expected to define a classical Riemannian metric in the selected coordinate system.

2.2. FORMULATION OF PAIRING PRODUCTS FOR THE GROUP OF TRANSLATIONS

 IN R^{n}Although no conditions are precised, the definition of K_{p} and eq. (\mathbb{E}) are formally applied to the non-compact group of translations in $E=R^{n}$. For the sake of brevity, let us define the two-variable map μ on $\left(R^{n}\right)^{2}: \mu(\mathbf{u}, \mathbf{t})=\mu_{\mathbf{u}, \mathbf{u}}(g)$, where \mathbf{t} denotes the vector of a translation g.

$$
\begin{aligned}
& K_{p}^{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \\
& \quad=\frac{\int \mu(\mathbf{u}, \mathbf{t}) \exp \left[-\frac{p}{2}\|\mathbf{t}+\mathbf{u}-\mathbf{u}\|^{2}\right] d \tau \cdot \int \mu(\mathbf{u}, \mathbf{t}) \exp \left[-\frac{p}{2}\|\mathbf{t}+\mathbf{u}+d \mathbf{u}-\mathbf{u}-d \mathbf{u}\|^{2}\right] d \tau}{\int \mu(\mathbf{u}, \mathbf{t}) \exp \left[-\frac{p}{2}\|\mathbf{t}+\mathbf{u}+d \mathbf{u}-\mathbf{u}\|^{2}\right] d \tau \cdot \int \mu(\mathbf{u}, \mathbf{t}) \exp \left[-\frac{p}{2}\|\mathbf{t}+\mathbf{u}-\mathbf{u}-d \mathbf{u}\|^{2}\right] d \tau}
\end{aligned}
$$

where $\mathrm{t}=\left(t_{1}, \ldots, t_{n}\right)$ (covariant vector), $d \tau=d t_{1} \ldots d t_{n}$, and where the integral symbol \int stretches from $-\infty$ to $+\infty$ for all the arguments t_{1}, \ldots, t_{n}.

$$
\begin{aligned}
& K_{p}^{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \\
& \quad=\frac{\left\{\int \mu\left(\mathbf{u}, \mathbf{t} \exp \left[-\frac{p}{2}\|\mathbf{t}\|^{2}\right] d \tau\right\}^{2}\right.}{\int \mu(\mathbf{u}, \mathbf{t}) \exp \left[-\frac{p}{2}\|\mathbf{t}+d \mathbf{u}\|^{2}\right] d \tau \cdot \int \mu(\mathbf{u}, \mathbf{t}) \exp \left[-\frac{p}{2}\|\mathbf{t}-d \mathbf{u}\|^{2}\right] d \tau}
\end{aligned}
$$

A second-order Taylor expansion in $d \mathbf{u}$ yields

$$
\begin{aligned}
& K_{p}^{P}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \approx\left\{\int \mu(\mathbf{u}, \mathbf{t}) e^{-p\|t\|^{2} / 2} d \tau\right\}^{2} / \\
& \left(\int \mu(\mathbf{u}, \mathbf{t}) e^{-p\|t\|^{2} / 2}\left[1-\frac{p}{2}\|d \mathbf{u}\|^{2}-p(\mathbf{t} \mid d \mathbf{u})+\frac{p^{2}}{2}(\mathbf{t} \mid d \mathbf{u})^{2}\right] d \tau\right. \\
& \left.\quad \times \int \mu(\mathbf{u}, \mathbf{t}) e^{-p\|t\|^{2} / 2}\left[1-\frac{p}{2}\|d \mathbf{u}\|^{2}+p(\mathbf{t} \mid d \mathbf{u})+\frac{p^{2}}{2}(\mathbf{t} \mid d \mathbf{u})^{2}\right] d \tau\right)
\end{aligned}
$$

Let us define the integrals:

$$
\begin{aligned}
& I=\int \mu(\mathbf{u}, \mathbf{t}) e^{-p\|\mathbf{t}\|^{2} / 2} d \tau ; \quad J=\int \mu(\mathbf{u}, \mathbf{t})\left(\mathbf{t} \left\lvert\, \frac{d \mathbf{u}}{\|d \mathbf{u}\|}\right.\right) e^{-p\|t\|^{2} / 2} d \tau \\
& K=\int \mu(\mathbf{u}, \mathbf{t})\left(\mathbf{t} \left\lvert\, \frac{d \mathbf{u}}{\|d \mathbf{u}\|}\right.\right)^{2} e^{-p\|t\|^{2} / 2} d \tau
\end{aligned}
$$

Then,

$$
\begin{aligned}
& K_{p}^{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \\
& \quad \approx \frac{I^{2}}{\left\{I\left[1-\frac{p}{2}\|d \mathbf{u}\|^{2}\right]-p J\|d \mathbf{u}\|+\frac{p^{2}}{2} K\|d \mathbf{u}\|^{2}\right\}\left\{I\left[1-\frac{p}{2}\|d \mathbf{u}\|^{2}\right]+p J\|d \mathbf{u}\|+\frac{p^{2}}{2} K\|d \mathbf{u}\|^{2}\right\}}, \\
& \\
& \quad K_{p}^{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \\
& \quad \approx \frac{1}{\left\{1-\frac{p}{2}\|d \mathbf{u}\|^{2}-p \frac{J}{I}\|d \mathbf{u}\|+\frac{p^{2}}{2} \frac{K}{I}\|d \mathbf{u}\|^{2}\right\}\left\{1-\frac{p}{2}\|d \mathbf{u}\|^{2}+p \frac{J}{I}\|d \mathbf{u}\|+\frac{p^{2}}{2} \frac{K}{I}\|d \mathbf{u}\|^{2}\right\}} \\
& \quad \approx \frac{1}{1-\frac{p}{2}\|d \mathbf{u}\|^{2}-p \frac{J}{I}\|d \mathbf{u}\|+\frac{p^{2}}{2} \frac{K}{I}\|d \mathbf{u}\|^{2}-\frac{p}{2}\|d \mathbf{u}\|^{2}+p \frac{J}{I}\|d \mathbf{u}\|+\frac{p^{2}}{2} \frac{K}{I}\|d \mathbf{u}\|^{2}-p^{2}\left(\frac{J}{I}\right)^{2}\|d \mathbf{u}\|^{2}}
\end{aligned}
$$

$$
K_{p}^{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \approx \frac{1}{1-p\left[1-p \frac{K}{I}+p\left(\frac{J}{I}\right)^{2}\right]\|d \mathbf{u}\|^{2}}
$$

And finally,

$$
K_{p}^{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u}) \approx 1+p\left[1-p \frac{K}{I}+p\left(\frac{J}{I}\right)^{2}\right]\|d \mathbf{u}\|^{2}
$$

2.3. G-WEIGHTED METRICS OF THE GROUP OF TRANSLATIONS IN R^{n}

From the preceding sections, the definition equation (\mathbb{E}) of $d \sigma^{2}=(\gamma d s)^{2}$ is written down by equating $K_{p}^{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$ with $\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(\gamma d s)=1+p q^{-n} b(\mathbf{u}) d s^{2}$:

$$
d s^{2}=\frac{1}{B(\mathbf{u})}\left[1-p \frac{K}{I}+p\left(\frac{J}{I}\right)^{2}\right]\|d \mathbf{u}\|^{2} .
$$

Since $\mathbf{u}=\left(x^{1}, \ldots, x^{n}\right),(\mathbf{t} \mid d \mathbf{u})=\sum t_{i} d x^{i}, d \tau=d t_{1} \ldots d t_{n},\|d \mathbf{u}\|^{2}=\sum\left(d x^{i}\right)^{2}$, let

$$
\begin{aligned}
& J_{i}=\int \mu(\mathbf{u}, \mathbf{t}) t_{i} e^{-p\|t\| \|^{2} / 2} d \tau \\
& K_{i}=\int \mu(\mathbf{u}, \mathbf{t}) t_{i}^{2} e^{-p\|t\|^{2} / 2} d \tau \\
& L_{i j}=\int \mu(\mathbf{u}, \mathbf{t}) t_{i} t_{j} e^{-p\| \| \|^{2} / 2} d \tau \quad\left(\text { with } L_{i i}=K_{i}\right)
\end{aligned}
$$

Then,

$$
\begin{aligned}
(J\|d \mathbf{u}\|)^{2} & =\left(\sum J_{i} d x^{i}\right)^{2}=\sum_{1 \leqslant i \leqslant n} \sum_{1 \leqslant j \leqslant n} J_{i} J_{j} d x^{i} d x^{j} \\
& =\sum_{1 \leqslant i \leqslant n} J_{i}^{2}\left(d x^{i}\right)^{2}+2 \sum_{1 \leqslant i<j \leqslant n} J_{i} J_{j} d x^{i} d x^{j} .
\end{aligned}
$$

Likewise,

$$
K\|d \mathbf{u}\|^{2}=\sum_{1 \leqslant i \leqslant n} K_{i}\left(d x^{i}\right)^{2}+2 \sum_{1 \leqslant i<j \leqslant n} L_{i j} d x^{i} d x^{j} .
$$

Thus,

$$
B(\mathbf{u}) d s^{2}=\sum_{i=1}^{n}\left[1-p \frac{K_{i}}{I}+p\left(\frac{J_{i}}{I}\right)^{2}\right]\left(d x^{i}\right)^{2}+2 p \sum_{1 \leqslant i<j \leqslant n}\left(\frac{J_{i} J_{j}}{I^{2}}-\frac{L_{i j}}{I}\right) d x^{i} d x^{j}
$$

This expression is now simplified by using an integration by part in J_{i} :

$$
\begin{aligned}
J_{i}= & \int \mu\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) t_{i} e^{-p\left(t_{1}^{2}+\ldots+t_{n}^{2}\right) / 2} d \tau=-\frac{1}{p} \int e^{-p\left(\|\mid t\|^{2}-t_{i}^{2}\right) / 2} \\
& \times\left\{\int_{-\infty}^{+\infty} \mu\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right)\left(-p t_{i}\right) e^{-p t_{i}^{2} / 2} d t_{i}\right\} \frac{d \tau}{d t_{i}} \\
J_{i}= & \frac{-1}{p} \int e^{-p\left(\|t \mid\|^{2}-t_{i}^{2}\right) / 2}\left\{\left[\mu\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) e^{-p t_{i}^{2} / 2}\right]_{t_{i}}^{t_{i}=-\infty}\right. \\
& \left.-\int_{t_{i}=-\infty}^{t_{i}=+\infty} \frac{\partial \mu}{\partial t_{i}}\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) e^{-p t_{i}^{2} / 2} d t_{i}\right\} \frac{d \tau}{d t_{i}} .
\end{aligned}
$$

If we assume $\mu\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) e^{-p t_{i}^{2} / 2} \underset{t_{i} \rightarrow \infty}{\rightarrow} 0$, then,

$$
J_{i}=\frac{1}{p} \int \frac{\partial \mu}{\partial t_{i}}\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) e^{-p\|t\|^{2} / 2} d \tau .
$$

Likewise, it is easily shown that under the same condition, if $i \neq j$,

$$
L_{i j}=\frac{1}{p^{2}} \int \frac{\partial^{2} \mu}{\partial t_{i} \partial t_{j}}\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) e^{-p\| \| \|^{2} / 2} d \tau
$$

and if $i=j$,

$$
K_{i}=L_{i i}=\frac{1}{p} \int\left(\mu+\frac{1}{p} \frac{\partial^{2} \mu}{\partial t_{i}^{2}}\right)\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) e^{-p\| \| \|^{2} / 2} d \tau
$$

Therefore, the expression of $d s^{2}$ becomes homogeneous:

$$
\begin{aligned}
& B(\mathbf{u}) d s^{2} \\
& \quad=\frac{1}{p} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{\int \frac{\partial \mu}{\partial t_{i}} e^{-p\|t\|^{2} / 2} d \tau \int \frac{\partial \mu}{\partial t_{j}} e^{-p\| \| \|^{2} / 2} d \tau}{I^{2}}-\frac{\int \frac{\partial^{2} \mu}{\partial t_{i} \partial t_{j}} e^{-p\|t\|^{2} / 2} d \tau}{I}\right) d x^{i} d x^{j}
\end{aligned}
$$

Generally speaking, a relevant form of $\mu_{u, v}(g)$ has been propounded, namely [7]: $\mu_{\mathbf{u}, \mathbf{v}}(g)=m(g) \pi(g \mathbf{u}) \pi(g \mathbf{v})$. Thus, $\mu_{\mathbf{u}, \mathbf{u}}(g)=m(g) \pi^{2}(g \mathbf{g})$, where m and π are onevariable maps of G and R^{n}, respectively. Assuming $m(g)=1$ (all translations are "equally possible"), the function $\mu(\mathbf{u}, \mathbf{t})$ defined on $E^{2}=R^{2 n}$ is to have the form

$$
\mu(\mathbf{u}, \mathbf{t})=\mu\left(x^{1}, \ldots, x^{n}, t_{1}, \ldots, t_{n}\right)=\pi^{2}(\mathbf{u}+\mathbf{t})=\mu\left(x^{1}+t_{1}, \ldots, x^{n}+t_{n}\right),
$$

where $\pi^{2}(\mathbf{y})=\mu(\mathbf{y})$ is a now a function of the argument $\mathbf{y}=\left(y^{1}, \ldots, y^{n}\right) \in E=R^{n}$.
This assumption entails two consequences:
a) $B(\mathbf{u})$ is a constant:

$$
\begin{aligned}
& B= q^{-n}\left(\int_{R^{n}} \mu^{2}\left(x^{1}+t_{1}, \ldots, x^{n}+t_{n}\right) d t_{1} \ldots d t_{n}\right)^{2} / \\
&\left(\int_{R^{n}} \mu\left(x^{1}+t_{1}, \ldots, x^{n}+t_{n}\right) d t_{1} \ldots d t_{n}\right)^{4}\left(\text { for } \mathbf{u}=\left(x^{1}, \ldots, x^{n}\right)\right) \\
&= q^{-n}\left(\int_{R^{n}} \mu^{2}\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}\right)^{2} /\left(\int_{R^{n}} \mu\left(t_{1}, \ldots, t_{n}\right) d t_{1} \ldots d t_{n}\right)^{4} \\
& \quad \quad \text { which is independent of } \mathbf{u} .
\end{aligned}
$$

b) It renders the integrals $I, J_{i}, L_{i j}$ convolution products. Then,

$$
\frac{\partial \mu}{\partial t_{i}}\left(x^{1}, \ldots, x^{n}, t_{1}, \ldots, t_{n}\right)=\frac{\partial \mu}{\partial y^{i}}(\mathbf{u}+\mathbf{t})=\frac{\partial \mu}{\partial x^{i}}\left(x^{1}, \ldots, x^{n}, t_{1}, \ldots, t_{n}\right)
$$

and subsequently

$$
J_{i}=\frac{\partial I}{\partial x^{i}} ; \quad L_{i j}=\frac{\partial^{2} I}{\partial x^{i} \partial x^{j}}
$$

Thus,

$$
\left.\begin{array}{rl}
B d s^{2} & =\frac{1}{p} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{\partial I}{\frac{\partial x^{i}}{I^{2}} \frac{\partial I}{x^{j}}}-\frac{\partial^{2} I}{\partial x^{i} \partial x^{j}}\right. \\
I
\end{array}\right) d x^{i} d x^{j} .
$$

where

$$
I=\int \mu(\mathbf{u}+\mathbf{t}) e^{-p\|t\|^{2} / 2} d \tau=\int \mu(\mathbf{u}-\mathbf{t}) e^{-p\|t\|^{2} / 2} d \tau
$$

In conclusion, $d s^{2}$ is an "exact second differential" defined by

$$
-B p=\frac{d^{2}(\ln I)}{d s^{2}}
$$

It must be stressed that this definition refers to the given "rectangular" coordinate system initially selected to formulate eq. (\mathbb{E}). Although $\ln I$ is supposed to be a scalar tensor, it is known that $\partial^{2}(\ln I) / \partial x^{i} \partial x^{j}$ is neither a $(0,2)$, a $(2,0)$ nor a $(1,1)$ tensor (in contrast, the gradient $\partial(\ln I) / \partial x^{i}$ is a covariant $(0,1)$ tensor). The bordered definition has no tensorial character, that is, in another coordinate system $\left\{x^{\prime i}\right\}$, the linear element

$$
d \sigma^{2} \neq \frac{\partial x^{k}}{\partial x^{\prime i}} \frac{\partial x^{h}}{\partial x^{\prime j}} \frac{\partial^{2}(\ln I)}{\partial x^{h} \partial x^{k}} d x^{\prime i} d x^{\prime j}
$$

Remark

This point and the differential formulation of $d s^{2}$ naturally prompt us to attempt to replace the ordinary differential of the equation by a covariant derivative in order to formulate an analogous tensorial definition of $d s^{2}$ [8]. Indeed, the preceding equation can be written as: $-B p d s^{2}=d\left(\nabla_{h}(\ln I) d x^{h}\right)$, where $\nabla_{h}(\ln I)$ $=\partial(\ln I) / \partial x^{h}$ is the gradient of $\ln I$. Since $\nabla_{h}(\ln I)$ is a covariant tensor, a tensorial differential equivalent is defined through the covariant derivatives of the components $\nabla_{h}(\ln I), 1 \leqslant h \leqslant n$. Thus, a tensorial definition of $d s^{2}$ might be given by: $-B p d s^{2}=D\left(\nabla_{h}(\ln I) d x^{h}\right)$, where D denotes the absolute differential of a tensor. However, this attempt is fruitless. Indeed,

$$
D\left(\nabla_{h}(\ln I) d x^{h}\right)=\left(\nabla_{h}(\ln I)\right)_{\mid k} d x^{k} d x^{h}, \quad \nabla_{h}(\ln I)_{\mid k}=\frac{\partial^{2}(\ln I)}{\partial x^{h} \partial x^{k}}+\Gamma_{h}^{m}{ }_{k} \frac{\partial(\ln I)}{\partial x^{m}}
$$

where $\Gamma_{h}{ }^{m}{ }_{k}$ denote the Christoffel symbols of the second kind with respect to the symmetric covariant tensor field $g_{h k}$ to be determined:

$$
\Gamma_{h}^{m}{ }_{k}=g^{l m} \Gamma_{h l k}
$$

(where $g^{l m}$ is the contravariant reciprocal of $g_{l m}: g_{i l} g^{l m}=\delta_{i}^{m}$),

$$
\Gamma_{h l k}=\frac{1}{2}\left[\frac{\partial g_{l k}}{\partial x^{h}}+\frac{\partial g_{l h}}{\partial x^{k}}-\frac{\partial g_{h k}}{\partial x^{l}}\right] \quad \text { (Christoffel symbols of the first kind). }
$$

Thus, the equation reads $-B p g_{h k}=\left(\nabla_{h}(\ln I)\right)_{\mid k}$, i.e.

$$
-B p g_{h k}=\frac{\partial^{2}(\ln I)}{\partial x^{h} \partial x^{k}}+\Gamma_{h}^{m} k \frac{\partial(\ln I)}{\partial x^{m}}
$$

where the $g_{h k}$'s are unknown for a given function $\ln I$.
Since the affine connection corresponding to $g_{i j}$ is symmetric, the covariant derivative of $g_{i j}$ expressed in terms of this particular connection vanishes identically, i.e.: $g_{h k \mid i}=0$ (Ricci's lemma). Thus, if $B p \neq 0,\left(\nabla_{h}(\ln I)\right)_{|k| i}=0$.

On the other hand, the Ricci's identity for a covariant vector field Y_{h} is written as

$$
-K_{h}^{l}{ }_{k i} Y_{l}-S_{k}^{l}{ }_{i} Y_{h \mid l}=Y_{h|k| i}-Y_{h|i| k}
$$

where $K_{h}{ }^{l}{ }_{k i}$ denotes the curvature tensor and $S_{k}{ }^{l}{ }_{i}$ denotes the torsion tensor. Since the Christoffel symbols are symmetric, $S_{k}{ }^{l}{ }_{i}=0$, and the Ricci's identity boils down to: $-K_{h}{ }^{l}{ }_{k i} Y_{l}=Y_{h|k| i}-Y_{h| | k}$. Let us apply this identity for $Y_{h}=\nabla_{h}(\ln I)$:

$$
-K_{h}^{l}{ }_{k i} \nabla_{l}(\ln I)=\nabla_{h}(\ln I)_{|k| i}-\nabla_{h}(\ln I)_{|i| k}=0-0=0
$$

The equality $K_{h}{ }^{l}{ }_{k i} Y_{l}=0$ is a necessary and sufficient condition to be satisfied by a parallel covariant vector field Y_{h} on a curved space such that $K_{h}{ }^{l}{ }_{k i} Y_{l} \neq 0$. Therefore, $\nabla_{h}(\ln I)$ is a parallel gradient, i.e.: $\nabla_{h}(\ln I)_{\mid k}=0$. Consequently, if we suppose $B p \neq 0$,

$$
g_{h k}=-\frac{1}{b p}\left(\nabla_{h}(\ln I)\right)_{\mid k}=0 \quad \text { and } \quad d s^{2}=0
$$

In conclusion, the sole (non-zero!) metric that might be tensorially represented as an absolute second differential corresponds to a flat space (where $K_{h}{ }^{l} k i=0$)!

3. Speculations for an interpretation of I and $d s^{2}$

3.1. ON THE EXTENSION OF THE EQUATION (E) FOR COMPLEX VALUES OF p AND μ

It appears not straightforward to formulate a natural extension of eq. (\mathbb{E}) entailing a (positive or negative) real solution $d s^{2}$ for complex-valued functions μ and/ or for imaginary parameters $p^{\prime}=i p, p \in R[9]$. Therefore, the simplest formal extension of (\mathbb{E}) is considered for complex values of μ and $p^{\prime}=i p$, even though the solution $d s^{2}$ is no longer real.

Replacing p by $p^{\prime}=i p$ and the real function $\mu(\mathbf{u}-\mathbf{t})$ by a complex counterpart in (\mathbb{E}), the same derivation leads to

$$
-i B p=\frac{d^{2}(\ln I)}{d s^{2}}
$$

where the condition $\mu\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) e^{-i p t_{i}^{2} / 2} \rightarrow_{t_{i} \rightarrow \infty} 0$ is satisfied by requiring that μ is regular enough and vanishes at infinity, i.e.: $\mu\left(\mathbf{u}, t_{1}, \ldots, t_{n}\right) \rightarrow_{t_{i} \rightarrow \infty} 0$.

3.2. CONNECTION WITH THE FORMALISM OF QUANTUM MECHANICS

Setting $p^{\prime}=1 / 2 x^{\prime 0}$, we recognize that if μ does not depend on p, the product

$$
\Psi=\left(2 \sqrt{\pi x^{\prime 0}}\right)^{-n} \cdot I
$$

is a generic solution of the equation of the heat (x^{10} varies as the time variable t, and Ψ represents the temperature) [10]:

$$
\frac{\partial \Psi}{\partial x^{\prime 0}}-\Delta \Psi=0
$$

where Δ is the Laplace operator: $\Delta=\nabla^{2}=\partial^{2} /\left(\partial x^{1}\right)^{2}+\ldots+\partial^{2} /\left(\partial x^{n}\right)^{2}$. Formally, if x^{10} is no longer a real number but a pure imaginary number $\left(x^{0}=i x^{0}, x^{0}\right.$ real), then, this equation is a Schrödinger-type equation:

$$
i \frac{\partial \Psi}{\partial x^{0}}=-\Delta \Psi
$$

where the Hamiltonian reduces to the Laplacian kinetic term: no potential term takes place. However, in the preceding treatment, p and B are considered as constant parameters. The function μ is therefore allowed to depend on p. Suppose that
μ has the form: $\mu(\mathbf{y})=\alpha(p) \beta(\mathbf{y})$ where $\alpha(p)$ does not depend on \mathbf{y} and where $\beta(\mathbf{y})$ does not depend on p. Then, Ψ / α is still a generic solution of the above Schrödingertype equation for $p=-i / 2 x^{0}$, and therefore Ψ is a generic solution of a Schrödingertype equation with a uniform term:

$$
\begin{aligned}
& i \frac{\partial}{\partial x^{0}}\left(\frac{\Psi}{\alpha}\right)=-\Delta\left(\frac{\Psi}{\alpha}\right), \quad \Psi\left(x^{0}=0, x, y, z\right)=\alpha(p=i \infty) \mu(x, y, z) \\
& i \frac{\partial \Psi}{\partial x^{0}}=-\Delta \Psi+V\left(x^{0}\right) \Psi=H \Psi, \quad \text { with } \quad V\left(x^{0}\right)=i \frac{d(\ln \alpha)}{d x^{0}}
\end{aligned}
$$

In quantum mechanics, a wave function accross the whole space is associated with a particle (or a system of particles) which is endowed with a fixed set S of extensive parameters (mass, charge, spin, etc.) and which is subjected to an external intensive potential P. S and P give rise to a potential energy V of the particle. Since the space is defined by its filling (e.g. the vacuum as a borderline case), a wave function might, in turn, be associated with the space itself. Such a wave function would be defined by a Schrödinger-type equation.

In order to interpret the two previous examples as borderline cases of a more general interpretation, it can be naturally suggested that the quantity

$$
\mathbf{V}\left(x^{0}, \mathbf{u}\right)=\frac{i \frac{\partial \Psi}{\partial x^{0}}+\Delta \Psi}{\Psi}
$$

represents some kind of complex "potential energy of the space". In other words, Ψ is a solution of the Schrödinger-type equation $\mathbf{H} \Psi+i \partial \Psi / \partial x^{0}=0$, where $\mathbf{H}=\mathrm{T}+\mathrm{V}$ is a Hamiltonian operator with a complex "potential energy" term (which now depends on both time- and space-coordinates). The function μ essentially determines this potential energy in that sense that $\mathbf{V}(p, \mathbf{u})=0$ if μ does not depend on p and that $\mathbf{V}(p, \mathbf{u})$ is uniform (i.e. only "time-dependent") if μ has the form $\mu(\mathbf{y})=\alpha(p) \beta(\mathbf{y})$.

3.3. CONNECTION WITH THE FORMALISM OF GENERAL RELATIVITY

General relativity states that the space-time is a Riemannian manifold endowed with metric $g_{i j} d x^{i} d x^{j}(i=0,1,2,3)$ which is determined by the mass-energy flow entering the Einstein equations. The datum of a "spatial wave function" in the (non-physical) equation $-B p d s^{2}=d^{2} \ln \Psi$ defines a "complex metric" $d s^{2}$, the real part of which might be identified with the spatial part of a space-time metric at each time-like parameter $p=-i / 2 x^{0}$. However, this speculative analysis does not give a complete space-time-like metric, for the variable "time" is not represented in the vector \mathbf{u} (\mathbf{u} is not a 4 -vector).
Direct problem. We are given some affine scalar of a real Euclidean space T_{n}, which is to be expressed in some rectangular coordinate system $\left\{x^{1}, \ldots, x^{n}\right\}$ by: μ :
$R^{n} \rightarrow R$ (or C). The expressions $\Phi_{\mathbf{u}, \mathbf{u}+d \mathbf{u}}(x)$ and $K_{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$ are then written down for the group of translation of T_{n}, at each point \mathbf{u} marked by $\left(x^{1}, \ldots, x^{n}\right)$ in R^{n} : eq. (\mathbb{E}) is then solved, and a linear element $d s^{2}$ is brought up. The pair ($R^{n}, d s^{2}$) is interpreted as one description of a Riemannian manifold X_{n} in the same way as $\left(R^{n}, d s_{e}^{2}\right)$ is a description of the affine Euclidean space T_{n} (where $d s_{e}^{2}=\left(\mathrm{d} x^{1}\right)^{2}$ $\left.+\ldots+\left(\mathrm{d} x^{n}\right)^{2}\right)$.

Equation (\mathbb{E}) would play two roles:
(a) it introduces a supplementary "time coordinate", p;
(b) it transforms the flat space T_{n} into a distorted (curved) space X_{n}.

Equation (\mathbb{E}) can be regarded as an application of a "time" variable onto an affine space, where μ plays the role of an "initial datum". A translation t makes a connection between two points of T_{n}. A component t_{i} operates independently on each direction " i ", like a "time potential" which generates the possible motion $x^{i} \rightarrow x^{i}+t_{i}$ in T_{n} along the direction "i". The "time coordinate" $x^{0}=1 /(2 p)$ would then be defined from the action of the group of translations in R^{3} and the corresponding equation (\mathbb{E}).

Converse problem. We are now given a space-time metric $g_{i j} d x^{i} d x^{j}(i=0,1,2,3)$ issued from the Einstein equations, the pure spatial part being denoted $d l^{2}=\gamma_{\alpha \beta} d x^{\alpha} d x^{\beta}\left(0 \neq \alpha, \beta=1,2\right.$ or $\left.3: \gamma_{\alpha \beta}=-g_{\alpha \beta}+g_{0 \alpha} g_{0 \beta} / g_{00}\right)$ [11]. We search for a corresponding wave function Ψ (or its "initial datum" μ), and more precisely, for one coordinate system $\left\{x^{i}\right\}$ of X_{n} satisfying:
(a) the open set of R^{4} covered by the x^{i} s is R^{4} in its entirety;
(b) the expression of $d l^{2}$ in this coordinate system is a solution of some equation (\mathbb{E}) written down for the group of translations in R^{3} and for a function μ of the x^{α} 's. From the preceding section, it follows that this condition is equivalent to the existence of a function $A\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ such that: $d l^{2}=d_{s}^{2} A$, where d_{s}^{2} refers to the three space coordinates only, i.e.

$$
\gamma_{\alpha \beta}=\frac{\partial^{2} A}{\partial x^{\alpha} \partial x^{\beta}} \quad \alpha, \beta=1,2,3 \text { (six terms). }
$$

Example: search for space wave functions of Robertson and Walker spaces
It must be henceforth stressed that the convolution form for Ψ does not allow for describing the simplest non-flat space in rectangular coordinates. Robertson and Walker space-times are compared with a completely isotropic perfect fluid. Indeed, the metric of such spaces is given in spherical coordinate, by

$$
d s_{r w}^{2}=c^{2} d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin \theta d \phi^{2}\right)\right]
$$

(here: $x^{0}=c t$ or $i c t, k=0,1$ or -1 , and the Riemannian curvature equals $k / R^{2}(t)$).

Since $d x^{2}+d y^{2}+d z^{2}=d r^{2}+r^{2} d \theta^{2}+r^{2} \sin \theta d \phi^{2}$, it can be shown that in Cartesian coordinates

$$
\begin{aligned}
d s_{r w}^{2}= & c^{2} d t^{2}-R^{2}(t)\left[\frac{1-k\left(y^{2}+z^{2}\right)}{1-k r^{2}} d x^{2}+\frac{1-k\left(x^{2}+z^{2}\right)}{1-k r^{2}} d y^{2}\right. \\
& \left.+\frac{1-k\left(y^{2}+x^{2}\right)}{1-k r^{2}} d z^{2}+\frac{2 k x y}{1-k r^{2}} d x d y+\frac{2 k x z}{1-k r^{2}} d x d z+\frac{2 k z y}{1-k r^{2}} d z d y\right]
\end{aligned}
$$

where $r^{2}=r^{2}(x, y, z)=x^{2}+y^{2}+z^{2}, k=0,+1$ or -1 , and where R is a positive function of time. Notice that both the spherical and Cartesian coordinate systems correspond to synchronous referentials, i.e. they satisfy: $g_{0 \alpha}=0$ for $\alpha \neq 0$, and consequently: $g_{\alpha \beta}=-\gamma_{\alpha \beta}$. The spatial time-dependent tridimensional metric reads: $d l_{r w}^{2}=-d s_{r w}^{2}+c^{2} d t^{2}$,i.e.

$$
\begin{aligned}
d l_{r w}^{2}= & R^{2}(t)\left[\frac{1-k\left(y^{2}+z^{2}\right)}{1-k r^{2}} d x^{2}+\frac{1-k\left(x^{2}+z^{2}\right)}{1-k r^{2}} d y^{2}\right. \\
& \left.+\frac{1-k\left(y^{2}+x^{2}\right)}{1-k r^{2}} d z^{2}+\frac{2 k x y}{1-k r^{2}} d x d y+\frac{2 k x z}{1-k r^{2}} d x d z+\frac{2 k z y}{1-k r^{2}} d z d y\right]
\end{aligned}
$$

- $k=-1$ or $+1\left(k \neq 0, V_{4}\right.$ is non-flat $)$

Let us assume that $d s^{2}=d l_{r w}^{2}$. Then, it is necessary that there exists a function $A_{p}(x, y, z)$ such that: $d l^{2}=d^{2} A$. Given such a function A_{p}, since $-B p d l^{2}=d^{2}(\ln \Psi)$, we would have to seek for a function I satisfying

$$
A_{p}=-\frac{1}{B p} \ln \left[\left(2 \sqrt{\pi i x^{0}}\right)^{-n} \cdot I / \alpha(p)\right]
$$

i.e. a function Ψ such that

$$
\left.\ln \Psi(p, x, y, z)=-B p A_{p}(x, y, z)\right)+\ln \alpha(p)
$$

where the term $\alpha(p)$ is actually unessential (it has been supposed that p varies with time only). In particular,

$$
\frac{\partial^{2} A_{p}}{\partial x \partial y}=R^{2}(t) \frac{k x y}{1-k r^{2}} \Rightarrow \frac{\partial\left(A_{p} / R^{2}\right)}{\partial x}=-\frac{x}{2} \ln \left(1-k r^{2}\right)+h_{1}(x, z)
$$

and likewise,

$$
\frac{\partial^{2}\left(A_{p} / R^{2}\right)}{\partial x \partial z}=\frac{k x z}{1-k r^{2}} \Rightarrow \frac{\partial\left(A_{p} / R^{2}\right)}{\partial x}=-\frac{x}{2} \ln \left(1-k r^{2}\right)+h_{2}(x, y)
$$

where h_{1} and h_{2} are any differentiable functions, respectively independent of y and z. However, equating the two former expressions yields

$$
h_{1}(x, z)=h_{2}(x, y)=h(x), \quad \text { where } h \text { is independent of } y \text { and } z .
$$

Therefore, the partial derivative of $\partial\left(A_{p} / R^{2}\right) / \partial x$ with respect to x gives

$$
\frac{\partial^{2}\left(A_{p} / R^{2}\right)}{\partial x^{2}}=-\frac{1}{2} \ln \left(1-k r^{2}\right)+\frac{x}{2} \frac{2 k x}{1-k r^{2}}+h^{\prime}(x) .
$$

On the other hand, $d l^{2}=d^{2} A_{p}$ also entails

$$
\frac{\partial^{2}\left(A_{p} / R^{2}\right)}{\partial x^{2}}=\frac{1-k\left(y^{2}+z^{2}\right)}{1-k r^{2}} .
$$

Thus, $h^{\prime}(x)=1+\frac{1}{2} \ln \left(1-k r^{2}\right)$. Obviously, the term on right-hand side depends on y and $z(k \neq 0)$ while $h^{\prime}(x)$ does not. In conclusion, the selected rectangular coordinate system does not allow for a description of hyperbolic or spheric Robertson and Walker spaces by means of any spatial wave functions Ψ as defined above.

- $k=0\left(V_{4}\right.$ is flat $)$

Then, $d l^{2}=R^{2}(t)\left[d x^{2}+d y^{2}+d z^{2}\right]$, and the function $A(x, y, z)=A_{p}(x, y, z)$ $=\left[R^{2}(t) / 2\right]\left(x^{2}+y^{2}+z^{2}\right)$ fulfills the required condition $d l^{2}=d^{2} A$. The subsequent equation $\Psi=\exp [-p B A+\ln \alpha(p)]$ is equivalent to the search for a density μ such that

$$
\begin{aligned}
& \left(2 \sqrt{\pi i x^{0}}\right)^{-3} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mu\left(x-t_{1}, y-t_{2}, z-t_{3}\right) e^{-p\left(t_{1}^{2}+t_{2}^{2}+t_{3}^{2}\right) / 2} d t_{1} d t_{2} d t_{3} \\
& \quad=\alpha(p) \exp \left[-\frac{B p R^{2}(t)}{2}\left(x^{2}+y^{2}+z^{2}\right)\right]
\end{aligned}
$$

where $x^{0}=1 /(2 i p)$ and where μ eventually depends on p. In order to get a solution μ of the form: $\mu(x, y, z)=m_{p}(x) m_{p}(y) m_{p}(z)$, we seek for a real or complex function m_{p} such that

$$
\int_{-\infty}^{+\infty} m_{p}(x-t) e^{-p t^{2} / 2} d t=\left(2 \sqrt{\pi i x_{0}}\right) \alpha^{1 / 3} \exp \left[-\frac{p B R^{2}}{2} x^{2}\right] .
$$

This is written as

$$
\int_{-\infty}^{+\infty} m_{p}(t) e^{-p\left(x^{2}+t^{2}-2 x t\right) / 2} d t=\sqrt{\frac{2 \pi}{p}} \alpha^{1 / 3} \exp \left[-\frac{p B R^{2}}{2} x^{2}\right]
$$

or

$$
\int_{-\infty}^{+\infty} m_{p}(t) e^{-p t^{2} / 2} e^{p x t} d t=\sqrt{\frac{2 \pi}{p}} \alpha^{1 / 3} \exp \left[\frac{p\left(1-B R^{2}\right)}{2} x^{2}\right]
$$

After the variable change $t \rightarrow u=-p t$, we get

$$
\frac{1}{p} \int_{-\infty}^{+\infty} m_{p}(-u / p) e^{-u^{2} /(2 p)} e^{-u x} d u=\sqrt{\frac{2 \pi}{p}} \alpha^{1 / 3} \exp \left[\frac{p\left(1-B R^{2}\right)}{2} x^{2}\right]
$$

i.e.

$$
\begin{equation*}
\mathcal{L}\left(f_{p}\right)(x)=\sqrt{2 \pi p} \alpha^{1 / 3} \exp \left[\frac{p\left(1-B R^{2}\right)}{2} x^{2}\right], \tag{I}
\end{equation*}
$$

where $\mathcal{L}\left(f_{p}\right)$ denotes the Laplace transform of the continuously derivable function $f_{p}(u)=m_{p}(-u / p) e^{-u^{2} /(2 p)}$. Conversely, $f_{p}(u)$ is given by the formula of MellinFourier:

$$
f_{p}(u)=\frac{1}{2 i \pi} \int_{-i \infty}^{+i \infty} \mathcal{L}\left(f_{p}\right)(z) e^{z u} d z
$$

The function

$$
z \rightarrow \exp \left[\frac{p\left(1-B R^{2}\right)}{2} z^{2}\right]
$$

is continuously holomorph on \mathbb{C} and coincides with

$$
x \rightarrow \exp \left[\frac{p\left(1-B R^{2}\right)}{2} x^{2}\right]
$$

on \mathbb{R}. Thus,

$$
f_{p}(u)=\sqrt{2 \pi p} \frac{\alpha^{1 / 3}}{2 i \pi} \int_{-i \infty}^{+i \infty} \exp \left[\frac{p\left(1-B R^{2}\right)}{2} z^{2}\right] e^{z u} d z
$$

i.e. $(z=i v)$

$$
\begin{aligned}
f_{p}(u) & =\sqrt{2 \pi p} \frac{\alpha^{1 / 3}}{2 \pi} \int_{-\infty}^{+\infty} \exp \left[\frac{p\left(1-B R^{2}\right)}{2}\left(-v^{2}\right)\right] e^{i v u} d v \\
& =\sqrt{\frac{p}{2 \pi}} \alpha^{1 / 3} 2 \int_{0}^{+\infty} \exp \left[-\frac{p\left(1-B R^{2}\right)}{2} v^{2}\right] \cos (v u) d v \\
& =\sqrt{\frac{2 p}{\pi}} \alpha^{1 / 3} \frac{\sqrt{\pi}}{2 \sqrt{\frac{p\left(1-B R^{2}\right)}{2}}} \exp \left[\frac{-u^{2}}{4 \frac{p\left(1-B R^{2}\right)}{2}}\right]
\end{aligned}
$$

And finally,

$$
m_{p}(-u / p)=\frac{\alpha^{1 / 3}}{\sqrt{1-B R^{2}}} \exp \left[\frac{-B R^{2} u^{2}}{2 p\left(1-B R^{2}\right)}\right],
$$

i.e. $(x=-u / p)$

$$
m_{p}(x)=\frac{\alpha^{1 / 3}}{\sqrt{1-B R^{2}}} \exp \left[\frac{-B p R^{2}}{2\left(1-B R^{2}\right)} x^{2}\right] .
$$

In conclusion, the density

$$
\begin{aligned}
\mu(p, x, y, z) & =m_{p}(x) m_{p}(y) m_{p}(z) \\
& =\alpha(p)\left[\frac{1}{1-B R^{2}}\right]^{3 / 2} \exp \left[\frac{-B p R^{2}}{2\left(1-B R^{2}\right)}\left(x^{2}+y^{2}+z^{2}\right)\right]
\end{aligned}
$$

gives rise to

$$
\ln \Psi=\frac{-B p R^{2}(t)}{2}\left(x^{2}+y^{2}+z^{2}\right)+\ln \alpha(p) .
$$

Prior to the calculation of the constant B, let us come back to the speculative interpretation of Ψ.

- Condition for a uniform 'potential energy" term

It should be emphasized that, in general, the potential energy of the space is not uniform, for μ does not read $\alpha(p) \beta(x, y, z)$, where β would not depend on p. However, the latter condition is fulfilled as soon as the term B satisfies the equation

$$
\frac{d}{d p}\left\{\frac{B p R^{2}}{1-B R^{2}}\right\}=0
$$

i.e. $B p R^{2} /\left(1-B R^{2}\right)=p_{0}$, constant with respect to the variables x, y, z and p (or t, or x^{0}).

Thus, the "potential energy" of the space is uniform only if B is subjected to vary with p as

$$
B=\frac{1}{1+p / p_{0}} \frac{1}{R^{2}} .
$$

Since p is proportional to the reciprocal of the "time", then

$$
B=\frac{1}{1+t_{0} / t} \frac{1}{R^{2}},
$$

where t_{0} corresponds to p_{0}. If t_{0} is interpreted as an "initial time" and $t_{0}=0$ (i.e. $p_{0}=\infty$), then,

$$
B=\frac{1}{R^{2}(t)} \quad \text { and } \quad q=\infty
$$

Under the above condition,

$$
\ln \Psi=\frac{-p}{2}\left(x^{2}+y^{2}+z^{2}\right)+\ln \alpha(p)
$$

or

$$
\Psi=\alpha(p) \exp \left[\frac{-p r^{2}}{2}\right]
$$

- Derivation of the constant term B

B is to be calculated from the postulated relationship

$$
B=q^{-3} \frac{\left(\int_{R^{3}} \mu^{2}(x, y, z) d x d y d z\right)^{2}}{\left(\int_{R^{3}} \mu(x, y, z) d x d y d z\right)^{4}}=q^{-3} \frac{\left(\int_{-\infty}^{+\infty} \exp \left[\frac{-B p R^{2}}{1-B R^{2}} x^{2}\right] d x\right)^{6}}{\left(\int_{-\infty}^{+\infty} \exp \left[\frac{-B p R^{2}}{2\left(1-B R^{2}\right)} x^{2}\right] d x\right)^{12}} .
$$

By using the known result $\int_{-\infty}^{+\infty} e^{-a^{2} x^{2}} d x=\sqrt{\pi} / a$ for $a^{2}=b p R^{2} / 1-B R^{2}$ and $a^{2}=\frac{1}{2} B p R^{2} / 1-B R^{2}$, we get

$$
B=q^{-3}\left[\frac{B p R^{2}}{\pi\left(1-B R^{2}\right)}\right]^{3}
$$

In a direct interpretation of the early equation $(\mathbb{E}), q$ is the volume of R^{3} : replacing q by ∞ in the above relationship, we are lead to the equation $B R^{2}=1$.

Therefore, the very first formulation of eq. (E) infers that the metric of flat Robertson and Walker spaces correspond to a Schrödinger-type equation with a uniform 'potential energy"'term.

- Calculation of the wave function of flat Robertson and Walker spaces

With the condition $B R^{2}(t)=1$, eq. (I) reads $\mathcal{L}\left(f_{p}\right)(x)=\sqrt{2 \pi p} \alpha^{1 / 3}$. It entails

$$
f_{p}(x)=\delta(x) F_{p}(x)
$$

where δ denotes the Dirac distribution, and where $F_{p}(x)$ is a function satisfying $F_{p}(0)=\sqrt{2 \pi p} \alpha^{1 / 3}$. Thus, $m_{p}(x)=\delta(-p x) F_{p}(-p x) \cdot e^{p x^{2} / 2}$, and consequently,

$$
\begin{aligned}
\mu(p, x, y, z) & =m_{p}(x) m_{p}(y) m_{p}(z) \\
& =\delta(-p x) \delta(-p y) \delta(-p z) F_{p}(-p x) F_{p}(-p y) F_{p}(-p z) \cdot e^{p\left(x^{2}+y^{2}+z^{2}\right) / 2}
\end{aligned}
$$

The condition $B R^{2}(t)=1$ would define Ψ, but not the "mother function" μ, unless μ is a distribution. But then

$$
\begin{aligned}
B & =q^{-3} \frac{\left(\int_{R^{3}} \mu^{2}(x, y, z) d x d y d z\right)^{2}}{\left(\int_{R^{3}} \mu(x, y, z) d x d y d z\right)^{4}}=q^{-3} \frac{\left(\delta(0) F_{p}^{2}(0)\right)^{6}}{\left(F_{p}(0)\right)^{12}} \\
& =q^{-3} \delta^{3}(0)=\infty \quad \text { unless } \quad q=a \delta(0)
\end{aligned}
$$

As $B R^{2}=1$ and $R^{2}(t) \neq 0$, then $B \neq \infty$ and it is confirmed that $q=\infty$.

The "potential energy" term is calculated from the definition

$$
\mathbf{V}\left(x^{0}, \mathbf{u}\right)=\frac{i \frac{\partial \Psi}{\partial x^{0}}+\Delta \Psi}{\Psi}=i\left[\frac{\partial \ln \alpha(p)}{\partial x^{0}}+\frac{3}{2 x^{0}}\right] .
$$

Remark

The expression " $V\left(x^{0}\right)=i \mathrm{~d}(\ln \alpha) / \mathrm{d} x^{0}$ " derived in section 3.2 for uniform "potential energy" terms does not apply with the present definition of $\alpha(p)$. The value of V could also be derived by putting $(2 \pi p)^{3 / 2} \alpha(p)$ in place of α in the direct expression of $V\left(x^{0}\right)$.

It is noteworthy that the "potential energy" term does not vanish, even if no variation with time is introduced a priori, i.e. if $\alpha(p)$ is constant:

$$
\Psi=\kappa \exp \left[\frac{-p r^{2}}{2}\right] \Rightarrow \mathbf{V}\left(x^{0}\right)=\frac{3 i}{2 x^{0}} .
$$

4. Conclusion

It cannot be overemphasized that the application of chemical algebra to the background of mathematical physics is purely speculative. In particular, the nontensorial character of eq. (\mathbb{E}) does not receive a straightforward interpretation. Moreover, the last speculations would be ambiguous as time and space variables are not treated in a homogeneous manner: the statement that no space exists without a time and vice versa is reflected in the definition of quadridimensional spacetime. From an axiomatic viewpoint, both the time variable and the space variables cannot be deduced from each other, and the whole quadridimensional space-time is to be introduced at the outset. The consequences of this principle will be developed within the framework of chemical algebra.

References and notes

[1] R. Chauvin, Paper I of this series, J. Math. Chem. 16(1994) 245.
[2] R. Chauvin, Paper II of this series, J. Math. Chem. 16 (1994) 257.
[3] R. Chauvin, Paper III of this series, J. Math. Chem. 16 (1994) 269.
[4] R. Chauvin, Paper IV of this series, J. Math. Chem. 16 (1994) 285.
[5] J.P. Serre, Représentations Linéaires des Groupes Finis, 3rd ed. (Hermann, Paris, 1978).
[6] R. Chauvin, Paper V of this series, J. Math. Chem. 17 (1995) 235.
[7] On the very outset, we may examine some particular general assumptions on μ which are different from that developped in the text (hypothesis 3).

- Hypothesis $1: \forall \mathbf{t} \in G, \mu(\mathbf{t})=\mu(-\mathbf{t})$

Then it is easily checked that $J_{i}=0$. Thus,
$B(\mathbf{u}) d s^{2}=-\frac{1}{p} \sum_{i=1}^{n} \frac{\int \frac{\partial^{2} \mu}{\partial t_{i} \partial t_{j}} e^{-p \|\left. t\right|^{2} / 2} d \tau}{I} d x_{i}^{2}$.
Non-Euclidean distances with non-constant coefficients $g_{i i}(\mathbf{u})$ occur only if μ depends on \mathbf{u}.

- Hypothesis $2: \mu(\mathbf{u}, \mathbf{t})=\mu_{1}\left(\mathbf{u}, t_{1}\right) \ldots \mu_{n}\left(\mathbf{u}, t_{n}\right)$

The multiple integrals reduce to simple integrals.
$I=\left\{\int_{-\infty}^{+\infty} \mu_{1}(\mathbf{u}, t) e^{-p t^{2} / 2} d t\right\} \cdots\left\{\int_{-\infty}^{+\infty} \mu_{n}(\mathbf{u}, t) e^{-p t^{2} / 2} d t\right\}=I_{1} \ldots I_{n}$,
$\int \frac{\partial \mu}{\partial t_{i}} e^{-p \| t| |^{2} / 2} d \tau=\int_{-\infty}^{+\infty} \frac{\partial \mu_{i}}{\partial t}(\mathbf{u}, t) e^{-p t^{2} / 2} d t \cdot \frac{I}{I_{i}}$,
$\int \frac{\partial^{2} \mu}{\partial t_{i} \partial t_{j}} e^{-p \|\left. t t\right|^{2} / 2} d \tau=\int_{-\infty}^{+\infty} \frac{\partial \mu_{i}}{\partial t}(\mathbf{u}, t) e^{-p t^{2} / 2} d t \int_{-\infty}^{+\infty} \frac{\partial \mu_{j}}{\partial t}(\mathbf{u}, t) e^{-p t^{2} / 2} d t \cdot \frac{I}{I_{i} I_{j}} \quad(i \neq j)$,
$\int \frac{\partial^{2} \mu}{\partial t_{i}^{2}} e^{-p\|t\|^{2} / 2} d \tau=\int_{-\infty}^{+\infty} \frac{\partial^{2} \mu_{i}}{\partial t^{2}}(\mathbf{u}, t) e^{-p t^{2} / 2} d t \cdot \frac{I}{I_{i}}$.
Therefore, the coefficients of the crossed terms $d x_{i} d x_{j}, i \neq j$, are nul. A reduced form of the metric is thus obtained in Cartesian coordinates:
$B(\mathbf{u}) d s^{2}=\frac{1}{p} \sum_{i=1}^{n}\left(\frac{1}{I_{i}^{2}}\left\{\int_{-\infty}^{+\infty} \frac{\partial \mu_{i}}{\partial t}(\mathbf{u}, t) e^{-p t^{2} / 2} d t\right\}^{2}-\frac{1}{I_{i}} \int_{-\infty}^{+\infty} \frac{\partial^{2} \mu_{i}}{\partial t^{2}}(\mathbf{u}, t) e^{-p t^{2} / 2} d t\right) d x_{i}^{2}$.

- Hypothesis 3: $I, J_{i}, L_{i j}$ are convolution products. This hypothesis meets the framework detailed in text.
[8] D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles (Dover, New York, 1989).
[9] Suppose that the left member of (\mathbb{E}) under its differential form still reduces to: $\Phi_{u, u+d u}(\gamma d s)$ $-1=\mathrm{p} d s^{2}$. If $d s^{2}$ means a (positive or negative) squared distance, and if p is a real parameter, the local pairing product $K_{p}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$ on the right-hand side of the equation must be a real number, even if μ is complex. It could be therefore suggested that in such a case, the upper and the lower products in K are replaced by two scalar products between members of the \mathbb{R}-vector space \mathbb{C} identified to \mathbb{R}^{2}. However, if p is an imaginary number ($p=i p^{\prime}, p^{\prime} \in \mathbb{R}$), the left-hand side of (\mathbb{E}) is a pure imaginary number $\Phi_{\mathrm{u}, \mathrm{u}+d \mathrm{u}}(\gamma d s)-1=i p^{\prime} d s^{2}$, but there is no natural way to reduce the right-hand side $K_{i p^{\prime}}(\mathbf{u}, \mathbf{u}+d \mathbf{u})$ to a pure imaginary number under such a condition.
[10] A. Guichardet, Calcul Intégral (Libraire Arman Colin, Paris, 1969) pp. 196-203.
[11] L. Landau and E. Lifchitz, Théorie des champs, Physique Théorique, Vol. 2, 4th French Ed. (Mir, Moscow, 1989).

